Browse Source

README-en.md edited on August 2, 2016 at 4:05pm

Jose R Ortiz Ubarri 8 years ago
parent
commit
c5ba917b0f
1 changed files with 19 additions and 19 deletions
  1. 19
    19
      README-en.md

+ 19
- 19
README-en.md View File

4
 ![main2.png](images/main2.png)
4
 ![main2.png](images/main2.png)
5
 ![main4.png](images/main4.png)
5
 ![main4.png](images/main4.png)
6
 
6
 
7
-[verano 2016 - Coralys - Ive]
7
+[verano 2016 - Coralys - Ive - Coralys]
8
 
8
 
9
 Arithmetic expressions are an essential part of almost any algorithm that solves a useful problem. Therefore, a basic skill in any computer programming language is to implement arithmetic expressions correctly. In this laboratory experience you will practice the implementation of arithmetic expressions in C++ by writing equations for the quadratic formula and completing the code for a game in which a frog jumps from leaf to leaf.
9
 Arithmetic expressions are an essential part of almost any algorithm that solves a useful problem. Therefore, a basic skill in any computer programming language is to implement arithmetic expressions correctly. In this laboratory experience you will practice the implementation of arithmetic expressions in C++ by writing equations for the quadratic formula and completing the code for a game in which a frog jumps from leaf to leaf.
10
 
10
 
22
 
22
 
23
 1. Reviewed the following concepts:
23
 1. Reviewed the following concepts:
24
 
24
 
25
-    a. Implementing arithmetic expressions in C++.
25
+    a. Implementing arithmetic expressions in C++
26
     
26
     
27
     b. Basic data types in C++ (int, float, double)
27
     b. Basic data types in C++ (int, float, double)
28
     
28
     
29
-    c. Using "type casting" to cast the value of variables to other data types within expressions.
29
+    c. Using "type casting" to cast the value of variables to other data types within expressions
30
     
30
     
31
-    d. Using arithmetic functions and constants from the `cmath` library.
31
+    d. Using arithmetic functions and constants from the `cmath` library
32
     
32
     
33
-    e. Quadratic equations and their graphs.
33
+    e. Quadratic equations and their graphs
34
 
34
 
35
 2. Studied the concepts and instructions for the laboratory session.
35
 2. Studied the concepts and instructions for the laboratory session.
36
-3. Taken the Pre-Lab quiz available in Moodle.
36
+3. Taken the Pre-Lab quiz, available in Moodle.
37
 
37
 
38
 
38
 
39
 
39
 
63
 
63
 
64
 Note that if the *discriminant*  $$b^2-4ac$$ of the quadratic formula is negative, the values of $$x$$ are complex numbers and are not plotted in the Cartesian plane. Therefore, if the discriminant is negative, the parabola does not intersect the $$x$$-axis. If the discriminant is equal to $$0$$, then the parabola intersects the $$x$$-axis in only one point (only the vertex touches the $$x$$-axis).
64
 Note that if the *discriminant*  $$b^2-4ac$$ of the quadratic formula is negative, the values of $$x$$ are complex numbers and are not plotted in the Cartesian plane. Therefore, if the discriminant is negative, the parabola does not intersect the $$x$$-axis. If the discriminant is equal to $$0$$, then the parabola intersects the $$x$$-axis in only one point (only the vertex touches the $$x$$-axis).
65
 
65
 
66
-If the discriminant is positive, the quadratic formula gives two solutions to the equation $$0 = a x^2 + b x + c$$ and these solutions are the intersects in the $$x$$-axis. For example, suppose that the quadratic formula gives two values
66
+If the discriminant is positive, the quadratic formula gives two solutions to the equation $$0 = a x^2 + b x + c$$ and these solutions are the intersects in the $$x$$-axis. For example, suppose that the quadratic formula gives two values:
67
 
67
 
68
 $$ x = x_1 $$
68
 $$ x = x_1 $$
69
 $$ x = x_2 $$
69
 $$ x = x_2 $$
121
 In this exercise you will implement the quadratic formula to complete a game in which a frog leaps from one leaf to another. You will assume that the leaves are in the $$x$$-axis and that the leap is determined by a parabola that opens down. If you want the frog to leap from leaf to leaf, you must find a quadratic equation with a parabola that opens down and intersects the $$x$$-axis in the places where the leaves are located. Your task is to write the equations for the quadratic formula.
121
 In this exercise you will implement the quadratic formula to complete a game in which a frog leaps from one leaf to another. You will assume that the leaves are in the $$x$$-axis and that the leap is determined by a parabola that opens down. If you want the frog to leap from leaf to leaf, you must find a quadratic equation with a parabola that opens down and intersects the $$x$$-axis in the places where the leaves are located. Your task is to write the equations for the quadratic formula.
122
 
122
 
123
 
123
 
124
-**Instructions**
124
+#### Instructions
125
 
125
 
126
-1. Load the proyect `QuadraticFrog` into `QtCreator`. There are two ways to do this: 
126
+1. Load the project `QuadraticFrog` into `QtCreator`. There are two ways to do this: 
127
 
127
 
128
-    * Using the virtual machine: Double click the file `QuadraticFrog.pro` that can be found in the `home/Documents/eip/Expressions-QuadraticFrog` of your virtual machine.
128
+    * Using the virtual machine: Double click the file `QuadraticFrog.pro` located in the folder `home/eip/labs/expressions-quadraticFrog` of your virtual machine.
129
     
129
     
130
-    * Downloading the proyect's folder from `Bitbucket`: Use a terminal and write the command `git clone http://bitbucket.org/eip-uprrp/expressions-quadraticfrog` to download the folder `QuadraticFrog` from `Bitbucket`. Double click the file `QuadraticFrog.pro`located in the folder that you downloaded to your computer. 
130
+    * Downloading the project's folder from `Bitbucket`: Use a terminal and write the command `git clone http://bitbucket.org/eip-uprrp/expressions-quadraticfrog` to download the folder `expressions-quadraticfrog` from `Bitbucket`. Double click the file `QuadraticFrog.pro`located in the folder that you downloaded to your computer. 
131
 
131
 
132
-2. Configure the project and run the program by clicking the green arrow in the menu on the left side of the Qt Creator window. The program will display a message saying that the quadratic formula is wrong. This happens because the program has testing instructions that verify that the code implementation is correct. Your program is missing the code for the quadratic formula and this is why the message is displayed.
132
+2. Configure the project and run the program by clicking the green arrow in the menu on the left side of the Qt Creator window. The program will display a message saying that the quadratic formula is wrong. This happens because the program has testing instructions that verify that the code implementation is correct. Your program is missing the code for the quadratic formula, so this is why the message is displayed.
133
 
133
 
134
 3. You will write the equations for the quadratic formula in the file `QuadraticFormula.cpp` (in `Sources`). In the function  `QuadraticPlus` add the equation
134
 3. You will write the equations for the quadratic formula in the file `QuadraticFormula.cpp` (in `Sources`). In the function  `QuadraticPlus` add the equation
135
 
135
 
151
 
151
 
152
     ---
152
     ---
153
 
153
 
154
-5. To play, the frog should leap from one leaf to another. Note that the leaves have values for $$x_1$$ and $$x_2$$. These values represent the intersects of the parabola with the $$x$$-axis. You should input the values for the coefficients $$a, b, c$$ of the quadratic equation so that its graph that is a parabola that opens down and intersects the $$x$$-axis in the values $$x_1, x_2$$ shown in the leaves. You can obtain these values noting that $$a x^2 + b x + c = a(x-x_1)(x-x_2),$$ as in the explanation above. 
154
+5. To play, the frog should leap from one leaf to another. Note that the leaves have values for $$x_1$$ and $$x_2$$. These values represent the intersects of the parabola with the $$x$$-axis. You should input the values for the coefficients $$a, b, c$$ of the quadratic equation so that its graph is a parabola that opens down and intersects the $$x$$-axis in the values $$x_1, x_2$$ shown in the leaves. You can obtain these values noting that $$a x^2 + b x + c = a(x-x_1)(x-x_2),$$ as in the explanation above. 
155
 
155
 
156
 
156
 
157
 
157
 
158
 
158
 
159
 ### Exercise 2 - Write a program to obtain a student's grade point average (GPA)
159
 ### Exercise 2 - Write a program to obtain a student's grade point average (GPA)
160
 
160
 
161
-Suppose that all courses in Yauco's University are 3 credits each and have the following point values: $$A = 4$$ points per credit; $$B = 3$$ points per credit; $$C = 2$$ points per credit; $$D = 1$$ point per credit y $$F = 0$$ points per credit. 
161
+Suppose that all courses in Yauco's University are 3 credits each and have the following point values: $$A = 4$$ points per credit; $$B = 3$$ points per credit; $$C = 2$$ points per credit; $$D = 1$$ point per credit and $$F = 0$$ points per credit. 
162
 
162
 
163
-**Instructions**
163
+#### Instructions
164
 
164
 
165
-1. Start a new "Non-Qt" project called "Average". Your `main()` function will contain the necessary code to ask the user for the number of A's, B's, C's, D's and F's obtained and compute the grade point average (GPA).
165
+1. Start a new "Non-Qt" project called "Average". Your `main()` function will have the necessary code to ask the user for the number of A's, B's, C's, D's and F's obtained and compute the grade point average (GPA).
166
 
166
 
167
-2. Your code should define the constants  $$A=4, B=3, C=2, D=1, F=0$$ for the points per credit, and ask the user to input the values for the variables  $$NumA$$, $$NumB$$, $$NumC$$, $$NumD$$, $$NumF$$. The variable $$NumA$$ represents the number of courses in which the student obtained A, $$NumB$$ represents the number of courses in which the student obtained B, etc. The program should display the GPA using the 0-4 point scale.
167
+2. Your code should define the constants $$A=4, B=3, C=2, D=1, F=0$$ for the points per credit, and ask the user to input the values for the variables $$NumA$$, $$NumB$$, $$NumC$$, $$NumD$$, $$NumF$$. The variable $$NumA$$ represents the number of courses in which the student obtained A, $$NumB$$ represents the number of courses in which the student obtained B, etc. The program should display the GPA using the 0-4 point scale.
168
     
168
     
169
     **Hints:** 
169
     **Hints:** 
170
     
170
     
180
 
180
 
181
 ## Deliverables
181
 ## Deliverables
182
 
182
 
183
-1. Use "Deliverable 1'  in Moodle to submit the file `QuadraticFormula.cpp` containing the code with the functions `QuadraticPlus` and `QuadraticMinus`. Remember to use good programming practices, by including the names of the programmers and documenting your program.
183
+1. Use "Deliverable 1'  in Moodle to submit the file `QuadraticFormula.cpp` containing the code with the functions `QuadraticPlus` and `QuadraticMinus`. Remember to use good programming practices, include the names of the programmers, and document your program.
184
 
184
 
185
-2. Use "Deliverable 2"  to submit the file `main.cpp` with the code to compute grade average. Remember to follow the instructions regarding the names and types of the variables, to include the names of the programmers, to document your program and to use good programming practices.
185
+2. Use "Deliverable 2"  to submit the file `main.cpp` with the code to compute the grade point average. Remember to follow the instructions regarding the names and types of the variables, to include the names of the programmers, to document your program and to use good programming practices.