|
|
|
|
165
|
**Figure 5** - (a) A drawing with a white background and red dots. (b) When the user clicks on the right diagonal line button (`DiagonalRight`) and clicks the cell shown, (c) a right diagonal line that expands towards the top to the right and towards the bottom to the left of the cell clicked is drawn, until it finds a cell with a different color from the color of the background.
|
165
|
**Figure 5** - (a) A drawing with a white background and red dots. (b) When the user clicks on the right diagonal line button (`DiagonalRight`) and clicks the cell shown, (c) a right diagonal line that expands towards the top to the right and towards the bottom to the left of the cell clicked is drawn, until it finds a cell with a different color from the color of the background.
|
166
|
|
166
|
|
167
|
|
167
|
|
168
|
-### Exercise 2: Implementar las funciones para hacer funcionar los botones de dibujar cuadrados, triángulos y círculos.
|
|
|
|
|
168
|
+### Exercise 2: Implement the functions that operate the buttons for drawing square, triangles and circles.
|
169
|
|
169
|
|
|
|
170
|
+Now, you will implement the functionality so that you can draw squares, circles and triangles. The **size** of the figure drawn will depend on the size select with sliding bar in the interface.
|
170
|
|
171
|
|
171
|
-Ahora implementarás la funcionalidad para dibujar cuadrados, círculos y líneas. El **tamaño** de la figura dibujada dependerá del tamaño seleccionado con la barra deslizante en la interface.
|
|
|
172
|
|
172
|
|
|
|
173
|
+#### 2a: Squares
|
173
|
|
174
|
|
174
|
-#### 2a: Cuadrados
|
|
|
175
|
-
|
|
|
176
|
-Para los cuadrados, ¡lo más fácil es pensar en ellos como si fueran cebollas! Un cuadrado de tamaño 1 es simplemente la celda marcada por el usuario. Un cuadrado de tamaño 2 es la celda marcada, cubierta por una capa de celdas de tamaño 1, y así sucesivamente. En otras palabras, un cuadrado de tamaño $n$ tendrá alto = ancho = $2n-1$.
|
|
|
|
|
175
|
+For the squares, the easiest way to think of it is as if they were onions! A square of size 1 is simply the cell clicked by the user. A square of size 2 is the cell clicked by the user, covered by a layer of cells of size 1, and so on. In other words, a square of size $n$ will have height = width = $2n-1$.
|
177
|
|
176
|
|
178
|
|
177
|
|
179
|
|
178
|
|