Browse Source

README-es.md edited online with Bitbucket

Jose R Ortiz Ubarri 8 years ago
parent
commit
bff081ab64
1 changed files with 11 additions and 7 deletions
  1. 11
    7
      README-es.md

+ 11
- 7
README-es.md View File

4
 ![main2.png](images/main2.png)
4
 ![main2.png](images/main2.png)
5
 ![main3.png](images/main3.png)
5
 ![main3.png](images/main3.png)
6
 
6
 
7
+[Verano 2016 - Rafa - Ive]
8
+
7
 Una de las ventajas de utilizar programas de computadoras es que podemos realizar tareas repetitivas fácilmente. Los ciclos como `for`, `while`, y `do-while` son  estructuras de control que nos permiten repetir un conjunto de instrucciones. A estas estructuras también se les llama *estructuras de repetición*.
9
 Una de las ventajas de utilizar programas de computadoras es que podemos realizar tareas repetitivas fácilmente. Los ciclos como `for`, `while`, y `do-while` son  estructuras de control que nos permiten repetir un conjunto de instrucciones. A estas estructuras también se les llama *estructuras de repetición*.
8
 
10
 
9
 Los algoritmos son uno de los conceptos más fundamentales en la Ciencia de Cómputos. Dado un pequeño conjunto de instrucciones y las estructuras básicas de programación, podemos resolver una gran cantidad de problemas. En esta experiencia de laboratorio vas a practicar la creación de algoritmos simulando un robot que debe explorar un espacio utilizando un conjunto bien limitado de instrucciones.
11
 Los algoritmos son uno de los conceptos más fundamentales en la Ciencia de Cómputos. Dado un pequeño conjunto de instrucciones y las estructuras básicas de programación, podemos resolver una gran cantidad de problemas. En esta experiencia de laboratorio vas a practicar la creación de algoritmos simulando un robot que debe explorar un espacio utilizando un conjunto bien limitado de instrucciones.
24
 1. Repasado las estructuras básicas de decisión y repetición en C++.
26
 1. Repasado las estructuras básicas de decisión y repetición en C++.
25
 2. Repasado la creación de objetos e invocación de sus métodos.
27
 2. Repasado la creación de objetos e invocación de sus métodos.
26
 3. Estudiado los conceptos e instrucciones para la sesión de laboratorio.
28
 3. Estudiado los conceptos e instrucciones para la sesión de laboratorio.
29
+4. Tomado el quiz Pre-Lab, disponible en Moodle.
27
 
30
 
28
 
31
 
29
 ---
32
 ---
150
 
153
 
151
 **Instrucciones**
154
 **Instrucciones**
152
 
155
 
153
-1. Descarga la carpeta `Repetitions-CountingSquares` de `Bitbucket` usando un terminal, moviéndote al directorio `Documents/eip`, y escribiendo el comando `git clone http://bitbucket.org/eip-uprrp/repetitions-countingsquares`.
156
+1. Carga a `QtCreator` el proyecto `CountingSquares`. Hay dos maneras de hacer esto:
154
 
157
 
155
-2. Carga a Qt creator el proyecto `CountingSquares`  haciendo doble "click" en el archivo `CountingSquares.pro` que se encuentra en la carpeta  `Documents/eip/Repetitions-CountingSquares` de tu computadora. 
158
+        * Utilizando la máquina virtual: Haz doble “click” en el archivo `CountingSquares.pro` que se encuentra  en el directorio `/home/eip/labs/repetitions-countingsquares` de la máquina virtual.
159
+        * Descargando la carpeta del proyecto de `Bitbucket`: Utiliza un terminal y escribe el commando `git clone http:/bitbucket.org/eip-uprrp/repetitions-countingsquares` para descargar la carpeta `repetitions-countingsquares` de `Bitbucket`. En esa carpeta, haz doble “click” en el archivo `CountingSquares.pro`.
156
 
160
 
157
-3. Configura el proyecto. El proyecto consiste de varios archivos. **Solo escribirás código en el archivo** `main.cpp`. Los demás archivos contienen funciones que implementan la funcionalidad de las instrucciones que entiende el robot.
161
+2. Configura el proyecto. El proyecto consiste de varios archivos. **Solo escribirás código en el archivo** `main.cpp`. Los demás archivos contienen funciones que implementan la funcionalidad de las instrucciones que entiende el robot.
158
 
162
 
159
-4. Al escribir tu algoritmo debes asegurarte de que el objeto `MainGameWindow` es creado usando el argumento `Mode::SQUARE_TOP_LEFT`.  Recuerda, el robot no sabe de antemano cuantos cuartos hay. Prueba tu algoritmo con algunos ejemplos.
163
+3. Al escribir tu algoritmo debes asegurarte de que el objeto `MainGameWindow` es creado usando el argumento `Mode::SQUARE_TOP_LEFT`.  Recuerda, el robot no sabe de antemano cuantos cuartos hay. Prueba tu algoritmo con algunos ejemplos.
160
 
164
 
161
-5. Si el tamaño de la cuadrícula es 3x3, ¿cuántos cuartos debe visitar el robot para completar tu algoritmo? ¿Qué tal 4x4? ¿Qué tal $$n \times n$$ cuartos?
165
+4. Si el tamaño de la cuadrícula es 3x3, ¿cuántos cuartos debe visitar el robot para completar tu algoritmo? ¿Qué tal 4x4? ¿Qué tal $$n \times n$$ cuartos?
162
 
166
 
163
-6. Presume que deseamos ahorrar en la energía que utiliza el robot. ¿Puedes hacer un algoritmo que utilice menos movidas para el mismo tamaño de cuadrícula?
167
+5. Presume que deseamos ahorrar en la energía que utiliza el robot. ¿Puedes hacer un algoritmo que utilice menos movidas para el mismo tamaño de cuadrícula?
164
 
168
 
165
-7. Una vez hayas terminado el algoritmo, lo hayas hecho correcto y eficiente, entrégalo usando Entrega 1 en Moodle. En el encabezado del algoritmo escribe y explica la expresión que hallaste sobre cuántos cuartos debe visitar el robot para completar su tarea para una cuadrícula $$n \times n$$ (algo así como "El robot toma 2n+5 movidas, 5 para llegar al medio y 2n para contar el resto")
169
+6. Una vez hayas terminado el algoritmo, lo hayas hecho correcto y eficiente, entrégalo usando Entrega 1 en Moodle. En el encabezado del algoritmo escribe y explica la expresión que hallaste sobre cuántos cuartos debe visitar el robot para completar su tarea para una cuadrícula $$n \times n$$ (algo así como "El robot toma 2n+5 movidas, 5 para llegar al medio y 2n para contar el resto")
166
 
170
 
167
 
171
 
168
 ### Ejercicio 2 -  Cuadrícula rectangular de cuartos
172
 ### Ejercicio 2 -  Cuadrícula rectangular de cuartos