Browse Source

Como en el libro

Luis Albertorio 8 years ago
parent
commit
0a91d286ef
2 changed files with 105 additions and 73 deletions
  1. 58
    42
      README-en.md
  2. 47
    31
      README-es.md

+ 58
- 42
README-en.md View File

1
-
2
 # Repetition Structures - Steganography
1
 # Repetition Structures - Steganography
3
 
2
 
4
 ![main1.png](images/main1.png)
3
 ![main1.png](images/main1.png)
7
 
6
 
8
 One of the advantages of using computer programs is that we can easily implement repetitive tasks. Structures such as the `for`, `while`, and `do-while` allow us to repeat a block of instructions as many times as needed. These structures are also referred to as *repetition structures*. In today's laboratory experience you will complete a steganography application to practice the use of nested loops and the manipulation of bidimensional arrays.
7
 One of the advantages of using computer programs is that we can easily implement repetitive tasks. Structures such as the `for`, `while`, and `do-while` allow us to repeat a block of instructions as many times as needed. These structures are also referred to as *repetition structures*. In today's laboratory experience you will complete a steganography application to practice the use of nested loops and the manipulation of bidimensional arrays.
9
 
8
 
10
-## Objectives:
9
+##Objectives:
11
 
10
 
12
 1. Apply nested loops and decision structures to manipulate bidimensional arrays and extract messages hidden in images.
11
 1. Apply nested loops and decision structures to manipulate bidimensional arrays and extract messages hidden in images.
13
 
12
 
16
 3. Use the binary representation of characters.
15
 3. Use the binary representation of characters.
17
 
16
 
18
 
17
 
19
-## Pre-Lab:
18
+##Pre-Lab:
20
 
19
 
21
 Before coming to the laboratory session you should have:
20
 Before coming to the laboratory session you should have:
22
 
21
 
37
 ---
36
 ---
38
 
37
 
39
 
38
 
40
-## Steganography
39
+##Steganography
41
 
40
 
42
-Steganography is the science of camouflaging the presence of hidden messages in legitimate carriers (seemingly harmless files). This science has been used by cybercriminals to inflict damage to computer systems and by (old style) terrorists to encode hidden messages transmitted through the internet. There is claim that Al-Qaeda may have used steganography to encode messages into images, and then transport them via e-mail, and possibly via USENET, to prepare and execute the September 11,  2001 terrorist attack.
41
+Steganography is the science of camouflaging the presence of hidden messages in legitimate carriers (seemingly harmless files). This science has been used by cybercriminals to inflict damage to computer systems and by (old style) terrorists to encode hidden messages transmitted through the internet. There is claim that Al-Qaeda may have used steganography to encode messages into images, and then transport them via e-mail, and possibly via USENET, to prepare and execute the September 11,  2001 terrorist attack. 
43
 
42
 
44
 Steganography has some lawful uses too [1]:
43
 Steganography has some lawful uses too [1]:
45
 
44
 
46
-* A medical imaging laboratory can embed a patient's information into the images, thus preventing against fraud and/or patient misdiagnosis.
45
+* A medical imaging laboratory can embed a patient's information into the images, thus preventing against fraud and/or patient misdiagnosis. 
47
 * We can use hidden information to identify the legitimate owner of a document or image. If the document is leaked, or distributed to unauthorized parties, one can trace it back to the rightful owner and perhaps discover which party broke the license distribution agreement.
46
 * We can use hidden information to identify the legitimate owner of a document or image. If the document is leaked, or distributed to unauthorized parties, one can trace it back to the rightful owner and perhaps discover which party broke the license distribution agreement.
48
 
47
 
49
 In this laboratory experience you will implement a simple algorithm to extract hidden messages from steganography images.
48
 In this laboratory experience you will implement a simple algorithm to extract hidden messages from steganography images.
50
 
49
 
51
 ---
50
 ---
52
 
51
 
53
-## Image Editing
52
+##Image Editing
54
 
53
 
55
 In this laboratory experience, you will recover secret messages that have been hidden in an image. To be able to carry out your task, you should understand some concepts related to images, be familiar with the methods of the `QImage` class in `Qt`,  and with functions to work with data of the `QRgb` type.
54
 In this laboratory experience, you will recover secret messages that have been hidden in an image. To be able to carry out your task, you should understand some concepts related to images, be familiar with the methods of the `QImage` class in `Qt`,  and with functions to work with data of the `QRgb` type.
56
 
55
 
57
-### Pixels
56
+###Pixels
58
 
57
 
59
 The smallest element in an image is called a *pixel*. This unit consists of a single color. Since each color is a combination of tones for the primary red, green and blue colors, it is coded as an unsigned integer whose bytes represent the tones of red, green and blue of the pixel (Figure 1). This combination is called the color's *RGB* which is an acronym for "Red-Green-Blue". For example, a pure red pixel has an RGB representation of `0x00ff0000`, while a white pixel has an RGB representation of `0x00FFFFFF` (since the color white is a combination of tones of red, green and blue in all of their intensity).
58
 The smallest element in an image is called a *pixel*. This unit consists of a single color. Since each color is a combination of tones for the primary red, green and blue colors, it is coded as an unsigned integer whose bytes represent the tones of red, green and blue of the pixel (Figure 1). This combination is called the color's *RGB* which is an acronym for "Red-Green-Blue". For example, a pure red pixel has an RGB representation of `0x00ff0000`, while a white pixel has an RGB representation of `0x00FFFFFF` (since the color white is a combination of tones of red, green and blue in all of their intensity).
60
 
59
 
68
 
67
 
69
 `Qt` uses the `QRgb` type to represent `RGB` values. Using the functions that are described below we can perform important operations to analyze images, such as obtaining the RGB of each pixel in an image, and to obtain the red, green and blue components of the `QRgb` value of the pixel.
68
 `Qt` uses the `QRgb` type to represent `RGB` values. Using the functions that are described below we can perform important operations to analyze images, such as obtaining the RGB of each pixel in an image, and to obtain the red, green and blue components of the `QRgb` value of the pixel.
70
 
69
 
71
-### Library
70
+###Library
72
 
71
 
73
 In today's laboratory experience you will use the `QImage` class. This class allows you to access the data in the pixels of an image to manipulate it. The documentation for the `QImage` class can be found in http://doc.qt.io/qt-4.8/qimage.html.
72
 In today's laboratory experience you will use the `QImage` class. This class allows you to access the data in the pixels of an image to manipulate it. The documentation for the `QImage` class can be found in http://doc.qt.io/qt-4.8/qimage.html.
74
 
73
 
79
 
78
 
80
 The objects of the `QImage` class have the following methods that will be useful for today's laboratory experience:
79
 The objects of the `QImage` class have the following methods that will be useful for today's laboratory experience:
81
 
80
 
82
-* `width()`      // returns the positive integer value for the image's width
83
-* `height()`      // returns the positive integer value for the image's height
81
+* `width()`      // returns the positive integer value for the image's width 
82
+* `height()`      // returns the positive integer value for the image's height 
84
 * `pixel(i, j)`       // returns the `QRgb` for the pixel in position `(i,j)`
83
 * `pixel(i, j)`       // returns the `QRgb` for the pixel in position `(i,j)`
85
 
84
 
86
 
85
 
92
 
91
 
93
 
92
 
94
 
93
 
95
-#### Examples:
94
+####Examples:
96
 
95
 
97
 1. If the following `4 x 4` image of pixels represents the object `origImage`,
96
 1. If the following `4 x 4` image of pixels represents the object `origImage`,
98
 
97
 
132
 ---
131
 ---
133
 
132
 
134
 
133
 
135
-### Embedding a message into an image
134
+###Embedding a message into an image
136
 
135
 
137
 One of the simplest methods of *hidding* a message in an image is by encoding the message into the least significant bits of the image pixel's colors. This method effectively hides the message in the image because changing the least significant bit of a 8-bit color is barely noticeable by the human observer.  
136
 One of the simplest methods of *hidding* a message in an image is by encoding the message into the least significant bits of the image pixel's colors. This method effectively hides the message in the image because changing the least significant bit of a 8-bit color is barely noticeable by the human observer.  
138
 
137
 
151
 
150
 
152
 ![main3.png](images/main3.png)
151
 ![main3.png](images/main3.png)
153
 
152
 
154
-Assume that each square is a pixel of the image.
153
+Assume that each square is a pixel of the image. 
155
 
154
 
156
 The first step would be to obtain the ASCII representation of the message. The bits of the ASCII representation are the bits we will encode into the colors of the pixels. The ASCII representation of `Dog` is:
155
 The first step would be to obtain the ASCII representation of the message. The bits of the ASCII representation are the bits we will encode into the colors of the pixels. The ASCII representation of `Dog` is:
157
 
156
 
176
 b2,b1,b0: the trio of bits
175
 b2,b1,b0: the trio of bits
177
 Output: modifiedPixel: the pixel with the embedded trio
176
 Output: modifiedPixel: the pixel with the embedded trio
178
 ========
177
 ========
179
-1. r = red component of p
178
+1. r = red component of p 
180
 2. g = green component of p
179
 2. g = green component of p
181
 3. b = blue component of p
180
 3. b = blue component of p
182
 4. clear the least significant bits of r,g,b
181
 4. clear the least significant bits of r,g,b
225
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
224
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
226
 
225
 
227
 
226
 
228
-Question:
227
+Question: 
229
 What message is hidden (using the least significant bit technique) in an image whose first 8 pixels are:
228
 What message is hidden (using the least significant bit technique) in an image whose first 8 pixels are:
230
 
229
 
231
 ```
230
 ```
232
 0x545554 0x666667 0x444544 0x333232
231
 0x545554 0x666667 0x444544 0x333232
233
-0xff0000 0x0100ff 0x00ff00 0x10aaba
232
+0xff0000 0x0100ff 0x00ff00 0x10aaba 
234
 ```
233
 ```
235
 
234
 
236
 Explain your answer.
235
 Explain your answer.
240
 
239
 
241
 ---
240
 ---
242
 
241
 
243
-!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-05.html"
242
+!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-01.html"
243
+<br>
244
+
245
+!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-02.html"
246
+<br>
247
+
248
+!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-03.html"
249
+<br>
250
+
251
+!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-04.html"
252
+<br>
253
+
254
+!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-05.html"
255
+<br>
256
+
257
+!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-06.html"
258
+<br>
244
 
259
 
260
+!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-07.html"
261
+<br>
245
 
262
 
246
 ---
263
 ---
247
 
264
 
252
 
269
 
253
 In today's laboratory experience you will complete a steganography application to extract hidden messages from images.
270
 In today's laboratory experience you will complete a steganography application to extract hidden messages from images.
254
 
271
 
255
-### Exercise 1: Extract the binary message
272
+###Exercise 1: Extract the binary message
256
 
273
 
257
-#### Instructions
274
+####Instructions
258
 
275
 
259
-1. Load the Qt project called `Steganography` by double-clicking on the `Steganography.pro` file in the `Documents/eip/Repetitions-Steganography` folder of your computer. You can also go to `http://bitbucket.org/eip-uprrp/repetitions-steganography` to download the `Repetitions-Steganography` folder to your computer.
276
+1) Load the Qt project called `Steganography` by double-clicking on the `Steganography.pro` file in the `Documents/eip/Repetitions-Steganography` folder of your computer. You can also go to `http://bitbucket.org/eip-uprrp/repetitions-steganography` to download the `Repetitions-Steganography` folder to your computer.
260
 
277
 
261
-   The project contains the skeleton for an application to recover embedded messages from images. The messages that you will be recovering have been  embedded using the least significant bit technique. The end of each message was encoded by using the ASCII character with binary code `00000000`.
278
+The project contains the skeleton for an application to recover embedded messages from images. The messages that you will be recovering have been  embedded using the least significant bit technique. The end of each message was encoded by using the ASCII character with binary code `00000000`. 
262
 
279
 
263
-2. Compile and run the program. You should obtain an interface that looks similar to:
280
+2) Compile and run the program. You should obtain an interface that looks similar to:
264
 
281
 
265
-    ![img1.png](images/img1.png)
282
+![img1.png](images/img1.png)
266
 
283
 
267
-3. The button `Load Image` has already been programmed to allow the user to load an image and display it. Your task is to program the functionality of the button `Retrieve Message` to analyze the image and extract the hidden message. The hidden message should be displayed in the `Write a message` window.
284
+3) The button `Load Image` has already been programmed to allow the user to load an image and display it. Your task is to program the functionality of the button `Retrieve Message` to analyze the image and extract the hidden message. The hidden message should be displayed in the `Write a message` window.
268
 
285
 
269
-4. You will be working with the `steganography.cpp` file. Complete the `ExtractMessage` function that receives a steganography image so it extracts the digits of the binary message encoded in the image and stores them in a string. The function should invoke another function `binaryStringToMessage` that converts the string from `0`'s and `1`'s in the message's characters and returns the hidden message.
286
+4) You will be working with the `steganography.cpp` file. Complete the `ExtractMessage` function that receives a steganography image so it extracts the digits of the binary message encoded in the image and stores them in a string. The function should invoke another function `binaryStringToMessage` that converts the string from `0`'s and `1`'s in the message's characters and returns the hidden message.
270
 
287
 
271
 
288
 
272
-    For example, if the first few pixels the image were these:
289
+For example, if the first few pixels the image were these:
273
 
290
 
274
-  ````
275
-  0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00
276
-  0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
277
-  0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .
278
-  ````
291
+````
292
+0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00 
293
+0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
294
+0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .
295
+````
279
 
296
 
280
-  your `ExtractMessage` function would extract the least significant bits of each colors component and construct the `string`: `"010001000110111101100111000000000.."`.
297
+your `ExtractMessage` function would extract the least significant bits of each colors component and construct the `string`: `"010001000110111101100111000000000.."`.
281
 
298
 
282
-  Notice that your algorithm should have some mechanism for detecting if the last 8 character block were all `0`. When this happens, the algorithm should stop reading the pixels.
299
+Notice that your algorithm should have some mechanism for detecting if the last 8 character block were all `0`. When this happens, the algorithm should stop reading the pixels.
283
 
300
 
284
-  The string of binary digits should then be sent to another function `binaryStringToMessage` (see Exercise 2) that interprets the `0`'s and `1`'s as the bits of ASCII characters. In the example, the string `”010001000110111101100111000000000”` would be decoded to "Dog"
285
-  (because `01000100` corresponds to 'D', `01101111` is 'o',  `01100111` is 'g', and a `00000000` symbolizes the end of the string.)
301
+The string of binary digits should then be sent to another function `binaryStringToMessage` (see Exercise 2) that interprets the `0`'s and `1`'s as the bits of ASCII characters. In the example, the string `”010001000110111101100111000000000”` would be decoded to "Dog" (because `01000100` corresponds to 'D', `01101111` is 'o',  `01100111` is 'g', and a `00000000` symbolizes the end of the string.)
286
 
302
 
287
-  To implement the algorithm for extracting the message, you should understand how the message was encoded. If necessary, review the "Embedding a message into an image" section.
303
+To implement the algorithm for extracting the message, you should understand how the message was encoded. If necessary, review the "Embedding a message into an image" section.
288
 
304
 
289
 
305
 
290
-### Exercise 2: Interpreting the message
306
+###Exercise 2: Interpreting the message
291
 
307
 
292
 
308
 
293
-#### Instructions
309
+####Instructions
294
 
310
 
295
 1. Complete the `binaryStringToMessage` function that receives the string of `0`'s and `1`'s extracted from the image so it returns the hidden message. You can use the `binStringToChar` function to convert substrings of 8 `0`'s and `1`'s in its corresponding character.
311
 1. Complete the `binaryStringToMessage` function that receives the string of `0`'s and `1`'s extracted from the image so it returns the hidden message. You can use the `binStringToChar` function to convert substrings of 8 `0`'s and `1`'s in its corresponding character.
296
 
312
 
299
     * `pug.png`, contains the message "Hello World !"
315
     * `pug.png`, contains the message "Hello World !"
300
     * `uprTorre.png`, contains the message "CCOM3033 - Steganography Lab Rules!!!"
316
     * `uprTorre.png`, contains the message "CCOM3033 - Steganography Lab Rules!!!"
301
 
317
 
302
-3. Once you validate your program using the test images, use the program to analyze the following images.
318
+3. Once you validate your program using the test images, use the program to analyze the following images. 
303
 
319
 
304
     * `gallito.png`
320
     * `gallito.png`
305
     * `puppy.png`
321
     * `puppy.png`
310
 
326
 
311
 ---
327
 ---
312
 
328
 
313
-## Deliverables
329
+##Deliverables
314
 
330
 
315
 Use "Deliverables" in Moodle to upload the `steganography.cpp` file that contains the `ExtractMessage` and `binaryStringToMessage` functions. Remember to use good programming techniques, include the names of the programmers involved, and to document your program.
331
 Use "Deliverables" in Moodle to upload the `steganography.cpp` file that contains the `ExtractMessage` and `binaryStringToMessage` functions. Remember to use good programming techniques, include the names of the programmers involved, and to document your program.
316
 
332
 
319
 ---
335
 ---
320
 
336
 
321
 
337
 
322
-## References
338
+##References 
323
 
339
 
324
 [1] Rocha, Anderson, and Siome Goldenstein. "Steganography and steganalysis in digital multimedia: Hype or hallelujah?." Revista de Informática Teórica e Aplicada 15.1 (2008): 83-110.
340
 [1] Rocha, Anderson, and Siome Goldenstein. "Steganography and steganalysis in digital multimedia: Hype or hallelujah?." Revista de Informática Teórica e Aplicada 15.1 (2008): 83-110.

+ 47
- 31
README-es.md View File

1
-
2
 #Estructuras de repetición - Esteganografía
1
 #Estructuras de repetición - Esteganografía
3
 
2
 
4
 ![main1.png](images/main1.png)
3
 ![main1.png](images/main1.png)
8
 Una de las ventajas de utilizar programas de computadoras es que podemos realizar tareas repetitivas fácilmente. Los ciclos como `for`, `while`, y `do-while` son estructuras de control que nos permiten repetir un conjunto de instrucciones. A estas estructuras también se les llama *estructuras de repetición*.  En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para practicar el uso de ciclos anidados en la manipulación de arreglos bi-dimensionales.
7
 Una de las ventajas de utilizar programas de computadoras es que podemos realizar tareas repetitivas fácilmente. Los ciclos como `for`, `while`, y `do-while` son estructuras de control que nos permiten repetir un conjunto de instrucciones. A estas estructuras también se les llama *estructuras de repetición*.  En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para practicar el uso de ciclos anidados en la manipulación de arreglos bi-dimensionales.
9
 
8
 
10
 
9
 
11
-## Objetivos:
10
+##Objetivos:
12
 
11
 
13
 1. Aplicar ciclos anidados y estructuras de control para manipular arreglos bi-dimensionales y  extraer mensajes escondidos en imágenes.
12
 1. Aplicar ciclos anidados y estructuras de control para manipular arreglos bi-dimensionales y  extraer mensajes escondidos en imágenes.
14
 
13
 
17
 3. Utilizar la representación binaria de caracteres.
16
 3. Utilizar la representación binaria de caracteres.
18
 
17
 
19
 
18
 
20
-## Pre-Lab:
19
+##Pre-Lab:
21
 
20
 
22
 Antes de llegar al laboratorio debes haber:
21
 Antes de llegar al laboratorio debes haber:
23
 
22
 
66
 
65
 
67
 ![figure1.png](images/figure1.png)
66
 ![figure1.png](images/figure1.png)
68
 
67
 
69
-**Figura 1.** Distribución de bits para las tonalidades de rojo, verde y azul dentro de la representación RGB.  Cada tonalidad puede tener valores entre 0x00 (los ocho bits en 0) y 0xFF (los 8 bits en 1).
68
+**Figura 1.** Distribución de bits para las tonalidades de rojo, verde y azul dentro de la representación RGB.  Cada tonalidad puede tener valores entre 0x00 (los ocho bits en 0) y 0xFF (los 8 bits en 1). 
70
 
69
 
71
 ---
70
 ---
72
 
71
 
175
 Podemos hacer lo siguiente para empotrar cada trío de bits  `b2, b1, b0`:
174
 Podemos hacer lo siguiente para empotrar cada trío de bits  `b2, b1, b0`:
176
 
175
 
177
 ```
176
 ```
178
-Datos de entrada: p: un píxel
177
+Datos de entrada: p: un píxel 
179
     b2,b1,b0: el trío de bits
178
     b2,b1,b0: el trío de bits
180
 Dato de salida: modifiedPixel: el píxel con el trío empotrado
179
 Dato de salida: modifiedPixel: el píxel con el trío empotrado
181
 ========
180
 ========
182
-1. r = componente rojo de p
181
+1. r = componente rojo de p 
183
 2. g = componente verde de p
182
 2. g = componente verde de p
184
 3. b = componente azul de p
183
 3. b = componente azul de p
185
 4. "limpiar" o apagar" los bits menos significativos de r,g,b
184
 4. "limpiar" o apagar" los bits menos significativos de r,g,b
231
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
230
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
232
 
231
 
233
 
232
 
234
-Pregunta:
233
+Pregunta: 
235
 ¿Qué mensaje está escondido (usando la técnica del bit menos significativo) en una imagen cuyos primeros 8 píxeles son:
234
 ¿Qué mensaje está escondido (usando la técnica del bit menos significativo) en una imagen cuyos primeros 8 píxeles son:
236
 
235
 
237
 
236
 
238
 ```
237
 ```
239
 0x545554 0x666667 0x444544 0x333232
238
 0x545554 0x666667 0x444544 0x333232
240
-0xff0000 0x0100ff 0x00ff00 0x10aaba
239
+0xff0000 0x0100ff 0x00ff00 0x10aaba 
241
 ```
240
 ```
242
 
241
 
243
 Explica tu respuesta.
242
 Explica tu respuesta.
246
 
245
 
247
 ---
246
 ---
248
 
247
 
248
+!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-01.html"
249
+<br>
250
+
251
+!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-02.html"
252
+<br>
253
+
254
+!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-03.html"
255
+<br>
256
+
257
+!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-04.html"
258
+<br>
249
 
259
 
250
-!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-05.html"
260
+!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-05.html"
261
+<br>
262
+
263
+!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-06.html"
264
+<br>
265
+
266
+!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-07.html"
267
+<br>
251
 
268
 
252
 ---
269
 ---
253
 
270
 
254
 ---
271
 ---
255
 
272
 
256
 
273
 
257
-## Sesión de laboratorio:
274
+##Sesión de laboratorio:
258
 
275
 
259
 En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para extraer mensajes ocultos en imágenes.
276
 En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para extraer mensajes ocultos en imágenes.
260
 
277
 
261
-### Ejercicio 1: Extraer el mensaje binario
278
+###Ejercicio 1: Extraer el mensaje binario
262
 
279
 
263
-#### Instrucciones
280
+####Instrucciones
264
 
281
 
265
 
282
 
266
-1. Carga a QtCreator el proyecto `Steganography` haciendo doble "click" en el archivo `Steganography.pro` en el directorio `Documents/eip/Repetitions-Steganography` de tu computadora. También puedes ir a `http://bitbucket.org/eip-uprrp/repetitions-steganography` para descargar la carpeta `Repetitions-Steganography` a tu computadora.
283
+1) Carga a QtCreator el proyecto `Steganography` haciendo doble "click" en el archivo `Steganography.pro` en el directorio `Documents/eip/Repetitions-Steganography` de tu computadora. También puedes ir a `http://bitbucket.org/eip-uprrp/repetitions-steganography` para descargar la carpeta `Repetitions-Steganography` a tu computadora.
267
 
284
 
268
-    El proyecto contiene el esqueleto de una aplicación para recuperar mensajes empotrados en imágenes. Los mensajes que estarás recobrando se empotraron utilizando la técnica del bit menos significativo. El final de cada mensaje se codificó utilizando el caracter ASCII con código binario `00000000`.
285
+El proyecto contiene el esqueleto de una aplicación para recuperar mensajes empotrados en imágenes. Los mensajes que estarás recobrando se empotraron utilizando la técnica del bit menos significativo. El final de cada mensaje se codificó utilizando el caracter ASCII con código binario `00000000`.
269
 
286
 
270
-2. Compila y corre el programa. Debes obtener una interface que luce parecida a:
287
+2) Compila y corre el programa. Debes obtener una interface que luce parecida a:
271
 
288
 
272
-    ![img1.png](images/img1.png)
289
+![img1.png](images/img1.png)
273
 
290
 
274
-3. El botón `Load Image` fue programado para permitir al usuario cargar una imagen y desplegarla. Tu tarea es programar la funcionalidad del botón `Retrieve Message` para analizar la imagen y extraer el mensaje escondido. El mensaje escondido debe desplegarse en la ventana que dice `Write a message`.
291
+3) El botón `Load Image` fue programado para permitir al usuario cargar una imagen y desplegarla. Tu tarea es programar la funcionalidad del botón `Retrieve Message` para analizar la imagen y extraer el mensaje escondido. El mensaje escondido debe desplegarse en la ventana que dice `Write a message`.
275
 
292
 
276
-4. Estarás trabajando con el archivo `steganography.cpp`. Completa la función `ExtractMessage` que recibe una imagen de esteganografía para que extraiga los dígitos del mensaje binario empotrado en la imagen y los guarde en un "string". La función debe invocar otra función `binaryStringToMessage` que convierta el "string" de `0`'s y `1`'s en los caracteres del mensaje y devolver el mensaje oculto.
293
+4) Estarás trabajando con el archivo `steganography.cpp`. Completa la función `ExtractMessage` que recibe una imagen de esteganografía para que extraiga los dígitos del mensaje binario empotrado en la imagen y los guarde en un "string". La función debe invocar otra función `binaryStringToMessage` que convierta el "string" de `0`'s y `1`'s en los caracteres del mensaje y devolver el mensaje oculto.
277
 
294
 
278
-    Por ejemplo, si los primeros píxeles de la imagen fuesen los siguientes,
295
+Por ejemplo, si los primeros píxeles de la imagen fuesen los siguientes,
279
 
296
 
280
-    ````
281
-    0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00
282
-    0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
283
-    0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .,
284
-    ````
297
+   ````
298
+   0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00
299
+   0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
300
+   0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .,
301
+   ````
285
 
302
 
286
-    tu función `ExtractMessage` extraería los bits menos significativos de cada componente de color construiría el siguiente `string`: `”010001000110111101100111000000000…”`.
303
+   tu función `ExtractMessage` extraería los bits menos significativos de cada componente de color construiría el siguiente `string`: `”010001000110111101100111000000000…”`.
287
 
304
 
288
-    Nota que tu algoritmo debe tener algún mecanismo para detectar si el último bloque de 8 caracteres extraídos eran todos `0`. Cuando esto pase, el algoritmo debe parar de leer los píxeles.
305
+   Nota que tu algoritmo debe tener algún mecanismo para detectar si el último bloque de 8 caracteres extraídos eran todos `0`. Cuando esto pase, el algoritmo debe parar de leer los píxeles.
289
 
306
 
290
-    El “string” de dígitos binarios debe ser enviado a otra función `binaryStringToMessage` (ver Ejercicio 2) que interprete los `0`'s  y `1`'s como los bits de caracteres ASCII. En el ejemplo, si pasaras  el argumento `”010001000110111101100111000000000”` a la función  `binaryStringToMessage`, debería devolver "Dog" (porque `01000100` corresponde a `D`, `01101111` es 'o',  `01100111` es 'g', y un `00000000` simboliza que se terminó el “string”.)
307
+   El “string” de dígitos binarios debe ser enviado a otra función `binaryStringToMessage` (ver Ejercicio 2) que interprete los `0`'s  y `1`'s como los bits de caracteres ASCII. En el ejemplo, si pasaras  el argumento `”010001000110111101100111000000000”` a la función  `binaryStringToMessage`, debería devolver "Dog" (porque `01000100` corresponde a `D`, `01101111` es 'o',  `01100111` es 'g', y un `00000000` simboliza que se terminó el “string”.)
291
 
308
 
292
 Para poder implementar el algoritmo de extracción del mensaje, debes entender cómo fue empotrado el mensaje. Si es necesario, repasa la sección “Empotrando un mensaje en una imagen”.
309
 Para poder implementar el algoritmo de extracción del mensaje, debes entender cómo fue empotrado el mensaje. Si es necesario, repasa la sección “Empotrando un mensaje en una imagen”.
293
 
310
 
294
 
311
 
295
-### Ejercicio 2: Interpretar el mensaje
312
+###Ejercicio 2: Interpretar el mensaje
296
 
313
 
297
-#### Instrucciones
314
+####Instrucciones
298
 
315
 
299
 
316
 
300
 1. Completa la función `binaryStringToMessage` que recibe el "string" de `0`'s y `1`'s extraido de la imagen para que devuelva el mensaje oculto. Puedes aprovechar la función `binStringToChar` para convertir "substrings" de 8 `0`'s y `1`'s en el caracter que le corresponde.
317
 1. Completa la función `binaryStringToMessage` que recibe el "string" de `0`'s y `1`'s extraido de la imagen para que devuelva el mensaje oculto. Puedes aprovechar la función `binStringToChar` para convertir "substrings" de 8 `0`'s y `1`'s en el caracter que le corresponde.
315
 
332
 
316
 ---
333
 ---
317
 
334
 
318
-## Entrega
335
+##Entrega
319
 
336
 
320
 Utiliza "Entrega" en Moodle para entregar el archivo `steganography.cpp` que contiene las funciones `ExtractMessage` y `binaryStringToMessage`. Recuerda utilizar buenas prácticas de programación, incluir el nombre de los programadores y documentar tu programa.
337
 Utiliza "Entrega" en Moodle para entregar el archivo `steganography.cpp` que contiene las funciones `ExtractMessage` y `binaryStringToMessage`. Recuerda utilizar buenas prácticas de programación, incluir el nombre de los programadores y documentar tu programa.
321
 
338
 
334
 ---
351
 ---
335
 
352
 
336
 ---
353
 ---
337
-