123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446 |
- import dash
- from dash import dcc, html, dash_table
- from dash.dependencies import Input, Output, State, ALL
- import pandas as pd
- from datetime import datetime as dt
- import plotly.express as px
- import plotly.graph_objs as go
- import os
-
-
-
- BASE_DIR = os.path.dirname(os.path.abspath(__file__))
- DATA_DIR = os.path.abspath(os.path.join(BASE_DIR, "..", "data"))
-
- detailed_scan_csv = os.path.join(DATA_DIR, "detailed_scan_results.csv")
- openvas_csv = os.path.join(DATA_DIR, "openvasscan.csv")
-
- # Load and prepare the dataset
- df = pd.read_csv(detailed_scan_csv)
- vulnerability_data = pd.read_csv(openvas_csv)
-
- # Preparing grouped data
- grouped_data = vulnerability_data.groupby(['IP', 'NVT Name', 'Severity']).first().reset_index()
- grouped_data['Details'] = grouped_data.apply(lambda row: f"CVSS: {row['CVSS']}\nSeverity: {row['Severity']}\nSummary: {row['Summary']}\nSolution Type: {row['Solution Type']}", axis=1)
-
- # List of unique IPs for the dropdown
- unique_ips = vulnerability_data['IP'].unique().tolist()
- unique_ips.insert(0, 'All')
-
- # Convert Timestamp to datetime and sort
- df['Timestamp'] = pd.to_datetime(df['Timestamp'])
- df.sort_values('Timestamp', inplace=True)
-
- # Extract unique timestamps
- unique_timestamps = df['Timestamp'].unique()
-
- # Prepare data for the timeline graph, grouped by day
- df['Date'] = df['Timestamp'].dt.date
- ip_count_over_time = df.groupby('Date')['IP'].nunique().reset_index()
- ip_count_over_time.columns = ['Date', 'IP_Count']
-
- # Create the Plotly graph
- timeline_fig = px.line(ip_count_over_time, x='Date', y='IP_Count', title='Number of IPs Over Time')
- timeline_fig.update_layout(
- xaxis_title="Date",
- yaxis_title="IP Count"
- )
-
- # Initialize the Dash app
- app = dash.Dash(__name__)
-
- # Convert timestamps to strings for slider display
- timestamp_options = [{'label': str(ts), 'value': ts} for ts in df['Timestamp'].unique()]
- timestamp_values = [ts.value for ts in df['Timestamp']]
-
- def style_status_badge(status):
- emoji_map = {
- 'Added': '🟩',
- 'Removed': '🟥',
- 'Still Active': '⚪'
- }
- return f"{emoji_map.get(status, '⬜')} {status}"
-
-
- app.layout = html.Div([
- dcc.Tabs(id="tabs", children=[
- dcc.Tab(label='Overview', children=[
- html.Div([
- dcc.RangeSlider(
- id='time-range-slider',
- min=0,
- max=len(unique_timestamps) - 1,
- value=[0, len(unique_timestamps) - 1],
- marks={i: {'label': str(ts)[:10]} for i, ts in enumerate(unique_timestamps)},
- step=1,
- allowCross=False
- ),
- dash_table.DataTable(
- id='table',
- columns=[{"name": i, "id": i, "presentation": "markdown"} if i == "Status" else {"name": i, "id": i}
- for i in df.columns
- ] + [{"name": "Status", "id": "Status", "presentation": "markdown"}],
- sort_action='native',
- filter_action='native',
- style_table={'overflowX': 'auto'},
- style_data_conditional=[{'if': {'column_id': 'Status'}, 'textAlign': 'center', 'width': '120px'}]
- ),
- html.Div([
- dcc.Graph(
- id='timeline-graph',
- figure=timeline_fig
- ),
- dcc.Graph(id='open-ports-bar-chart')
- ], style={'display': 'flex', 'flex-direction': 'row'}),
- html.Div([
- dcc.Graph(id='severity-pie-chart')
-
- ], style={'display': 'flex', 'flex-direction': 'row'}),
- html.Div([
- dcc.Graph(id='ip-change-bar-chart'),
- dash_table.DataTable(
- id='ip-change-table',
- columns=[
- {"name": "IP", "id": "IP"},
- {"name": "Status", "id": "Status"}
- ],
- sort_action='native',
- filter_action='native',
- style_table={'overflowX': 'auto'}
- )
- ], style={'display': 'flex', 'flex-direction': 'row'}),
- html.Div(id='summary-section', style={'padding': '20px'})
- ])
- ]),
- dcc.Tab(label='Vulnerability Analysis', children=[
- html.Div([
- dcc.Dropdown(
- id='severity-dropdown',
- options=[{'label': s, 'value': s} for s in ['All', 'High', 'Medium', 'Low']],
- value='All'
- ),
- dcc.Dropdown(
- id='ip-dropdown',
- options=[{'label': ip, 'value': ip} for ip in unique_ips],
- value='All'
- ),
- dcc.Graph(id='vulnerability-treemap'),
- html.Div(id='details-and-ip-output'),
- html.Div(id='clicked-ip', style={'display': 'none'})
- ])
- ]),
- dcc.Tab(label='Port Heatmap', children=[
- html.Div([
- dcc.Graph(id='ip-port-heatmap', style={'height': '700px', 'width': '100%'}),
- html.Div([
- html.P("🟦 = Port is Open"),
- html.P("⬜ = Port is Closed"),
- html.P("Each row represents a Host (IP), and each column is a Port."),
- html.P("This heatmap shows which ports are open on each host at the selected time.")
- ], style={
- 'padding': '10px',
- 'backgroundColor': '#f9f9f9',
- 'border': '1px solid #ccc',
- 'marginTop': '10px',
- 'borderRadius': '5px'
- })
- ])
-
- ])
- ])
- ])
-
- @app.callback(
- [Output('table', 'data'),
- Output('table', 'style_data_conditional'),
- Output('timeline-graph', 'figure'),
- Output('open-ports-bar-chart', 'figure'),
- Output('severity-pie-chart', 'figure'),
- Output('ip-port-heatmap', 'figure'),
- Output('ip-change-bar-chart', 'figure'),
- Output('ip-change-table', 'data'),
- Output('summary-section', 'children')],
- [Input('time-range-slider', 'value')]
- )
- def update_overview_tab(time_range):
- start_index, end_index = time_range
- start_timestamp = unique_timestamps[start_index]
- end_timestamp = unique_timestamps[end_index]
-
- # Filter data within the selected time range
- filtered_df = df[(df['Timestamp'] >= start_timestamp) & (df['Timestamp'] <= end_timestamp)].copy()
-
- # Update table
- filtered_df_selected = filtered_df.copy()
-
-
- # Determine IPs in the time range
- #all_ips = set(filtered_df['IP'])
- #status_dict = {ip: 'Within Range' for ip in all_ips}
-
- # Assign badge-style labels using style_status_badge
- #filtered_df_selected['Status'] = filtered_df_selected['IP'].map(status_dict).fillna('Unknown')
- # filtered_df_selected['Status'] = filtered_df_selected['Status'].apply(style_status_badge)
- # Determine IPs in the time range
- all_ips = set(filtered_df['IP'])
-
- # Get previous IP set
- if start_index > 0:
- prev_timestamp = unique_timestamps[start_index - 1]
- else:
- prev_timestamp = start_timestamp
-
- prev_ips = set(df[df['Timestamp'] == prev_timestamp]['IP'])
- new_ips = all_ips - prev_ips
- removed_ips = prev_ips - all_ips
- existing_ips = all_ips.intersection(prev_ips)
-
- # Add dummy rows for removed IPs (with NaNs or placeholders)
- removed_rows = pd.DataFrame({
- "IP": list(removed_ips),
- "Hostname": "", "MAC Address": "", "Protocol": "", "Port": "", "Name": "",
- "State": "", "Product": "", "Version": "", "Extra Info": "",
- "Timestamp": pd.NaT, "Date": None
- })
- filtered_df_selected = pd.concat([filtered_df_selected, removed_rows], ignore_index=True)
-
-
-
- # Build status dictionary for badges
- status_dict = {}
- for ip in new_ips:
- status_dict[ip] = 'Added'
- for ip in removed_ips:
- status_dict[ip] = 'Removed'
- for ip in existing_ips:
- status_dict[ip] = 'Still Active'
-
- # Assign and badge
- filtered_df_selected['Status'] = filtered_df_selected['IP'].map(status_dict).fillna('Unknown')
- filtered_df_selected['Status'] = filtered_df_selected['Status'].apply(style_status_badge)
-
- # Apply conditional formatting based on the 'Status' column
- style = [
- {
- 'if': {
- 'filter_query': '{Status} = "Added"',
- },
- 'borderLeft': '4px solid green',
- 'backgroundColor': '#eaf7ea' # very light green background
- },
- {
- 'if': {
- 'filter_query': '{Status} = "Removed"',
- },
- 'borderLeft': '4px solid red',
- 'backgroundColor': '#fcebea' # very light red background
- },
- {
- 'if': {
- 'filter_query': '{Status} = "Still Active"',
- },
- 'borderLeft': '4px solid lightgray'
- }
- ]
-
- # Update timeline graph, grouped by day
- filtered_df['Date'] = filtered_df['Timestamp'].dt.date
- ip_count_over_time = filtered_df.groupby('Date')['IP'].nunique().reset_index()
- ip_count_over_time.columns = ['Date', 'IP_Count']
- timeline_fig = px.line(ip_count_over_time, x='Date', y='IP_Count', title='Number of IPs Over Time')
- timeline_fig.update_layout(
- xaxis_title="Date",
- yaxis_title="IP Count"
- )
-
- # Open ports bar chart
- open_ports_count = filtered_df['Port'].value_counts().reset_index()
- open_ports_count.columns = ['Port', 'Count']
- open_ports_bar_chart = px.bar(open_ports_count, x='Port', y='Count', title='Distribution of Open Ports')
- open_ports_bar_chart.update_layout(
- xaxis_title="Port",
- yaxis_title="Count"
- )
- open_ports_bar_chart.update_traces(marker_color='blue', marker_line_color='darkblue', marker_line_width=1.5, opacity=0.8)
-
- # Severity pie chart
- severity_count = vulnerability_data['Severity'].value_counts().reset_index()
- severity_count.columns = ['Severity', 'Count']
- severity_pie_chart = px.pie(severity_count, names='Severity', values='Count', title='Severity Distribution')
-
- # IP-Port Heatmap with Fixed Port Range and Binary Open/Closed
-
- # Define all possible ports you want to show (e.g. top 1024)
- # Only include ports that were actually scanned, but sorted
- all_ports = sorted(filtered_df['Port'].dropna().astype(int).unique().tolist())
-
- all_ips = set(filtered_df['IP'])
-
-
-
- heatmap_df = (
- filtered_df[["IP", "Port"]]
- .dropna()
- .assign(value=1)
- .pivot_table(index="IP", columns="Port", values="value", fill_value=0)
- )
- heatmap_df.columns = heatmap_df.columns.astype(int)
- heatmap_df = heatmap_df.sort_index(axis=1)
-
- hover_text = [
- [f"IP: {ip}<br>Port: {port}<br>Status: {'Open' if val == 1 else 'Closed'}"
- for port, val in zip(heatmap_df.columns, row)]
- for ip, row in zip(heatmap_df.index, heatmap_df.values)
- ]
-
-
- # Generate heatmap
- ip_port_heatmap = go.Figure(data=go.Heatmap(
- z=heatmap_df.values,
- x=heatmap_df.columns,
- y=heatmap_df.index,
- text=hover_text,
- hoverinfo='text',
- colorscale=[[0, 'white'], [1, 'darkblue']],
- zmin=0,
- zmax=1,
- zsmooth=False,
- colorbar=dict(
- title='Port Status',
- tickvals=[0, 1],
- ticktext=['Closed (White)', 'Open (Blue)']
- )
- ))
- ip_port_heatmap.update_layout(
- title='Binary Heatmap - Which Ports Are Open on Which Hosts',
- xaxis_title='Port',
- yaxis_title='IP',
- height=600
- )
-
-
- # Determine IPs added and removed
- if start_index > 0:
- prev_timestamp = unique_timestamps[start_index - 1]
- else:
- prev_timestamp = start_timestamp
-
- prev_ips = set(df[df['Timestamp'] == prev_timestamp]['IP'])
- new_ips = all_ips - prev_ips
- removed_ips = prev_ips - all_ips
- existing_ips = all_ips.intersection(prev_ips)
-
- # IP change table
- ip_change_data = []
- for ip in new_ips:
- ip_change_data.append({"IP": ip, "Status": "Added"})
- for ip in removed_ips:
- ip_change_data.append({"IP": ip, "Status": "Removed"})
- for ip in existing_ips:
- ip_change_data.append({"IP": ip, "Status": "Still Active"})
-
- # IP change bar chart
- ip_change_summary = {
- "Added": len(new_ips),
- "Removed": len(removed_ips),
- "Still Active": len(existing_ips)
- }
- ip_change_bar_chart = px.bar(
- x=list(ip_change_summary.keys()),
- y=list(ip_change_summary.values()),
- title="IP Changes Summary"
- )
- ip_change_bar_chart.update_layout(
- xaxis_title="Change Type",
- yaxis_title="Count"
- )
- ip_change_bar_chart.update_traces(marker_color='purple', marker_line_color='darkblue', marker_line_width=1.5, opacity=0.8)
-
- # Summary section
- total_unique_ips = len(df['IP'].unique())
- total_vulnerabilities = len(vulnerability_data)
- most_common_ports = filtered_df['Port'].value_counts().head(5).to_dict()
- most_dangerous_vulnerability = vulnerability_data.loc[vulnerability_data['CVSS'].idxmax()]
- most_common_vulnerability = vulnerability_data['NVT Name'].value_counts().idxmax()
- most_common_ip = df['IP'].value_counts().idxmax()
- average_cvss_score = vulnerability_data['CVSS'].mean()
- ips_with_most_vulnerabilities = vulnerability_data['IP'].value_counts().head(5).to_dict()
-
- summary_content = html.Div([
- html.H3("Summary of Interesting Data"),
- html.P(f"Total unique IPs: {total_unique_ips}"),
- html.P(f"Total vulnerabilities recorded: {total_vulnerabilities}"),
- html.P(f"Most dangerous vulnerability (highest CVSS score): {most_dangerous_vulnerability['NVT Name']} with CVSS score {most_dangerous_vulnerability['CVSS']}"),
- html.P(f"Most common vulnerability: {most_common_vulnerability}"),
- html.P(f"Most common IP: {most_common_ip}"),
- html.P(f"Average CVSS score: {average_cvss_score:.2f}"),
- html.H4("Most Common Ports:"),
- html.Ul([html.Li(f"Port {port}: {count} times") for port, count in most_common_ports.items()]),
- html.H4("IPs with the Most Vulnerabilities:"),
- html.Ul([html.Li(f"IP {ip}: {count} vulnerabilities") for ip, count in ips_with_most_vulnerabilities.items()])
- ])
-
- return (filtered_df_selected.to_dict('records'), style, timeline_fig, open_ports_bar_chart, severity_pie_chart,
- ip_port_heatmap, ip_change_bar_chart, ip_change_data, summary_content)
-
- @app.callback(
- [Output('vulnerability-treemap', 'figure'),
- Output('clicked-ip', 'children')],
- [Input('severity-dropdown', 'value'),
- Input('ip-dropdown', 'value'),
- Input({'type': 'dynamic-ip', 'index': ALL}, 'n_clicks')],
- [State({'type': 'dynamic-ip', 'index': ALL}, 'index')]
- )
- def update_treemap(selected_severity, selected_ip, n_clicks, ip_indices):
- ctx = dash.callback_context
- triggered_id = ctx.triggered[0]['prop_id'] if ctx.triggered else None
- # Determine if the callback was triggered by a related IP link click
- if ctx.triggered and 'dynamic-ip' in ctx.triggered[0]['prop_id']:
- # Extract clicked IP
- triggered_info = ctx.triggered[0]
- button_id = triggered_info['prop_id'].split('}.')[0] + '}'
- clicked_ip = json.loads(button_id)['index']
- else:
- clicked_ip = None
-
- # Filter data based on severity, dropdown IP, or clicked related IP
- filtered_data = grouped_data.copy()
- filtered_data['CVSS'] = filtered_data['CVSS'].fillna(0)
- if selected_severity != 'All':
- filtered_data = filtered_data[filtered_data['Severity'] == selected_severity]
- if selected_ip != 'All':
- filtered_data = filtered_data[filtered_data['IP'] == selected_ip]
- if clicked_ip:
- filtered_data = filtered_data[filtered_data['IP'] == clicked_ip]
- filtered_data = filtered_data[filtered_data['CVSS'] > 0]
-
- fig = px.treemap(
- filtered_data,
- path=['IP', 'NVT Name'],
- values='CVSS',
- color='CVSS',
- color_continuous_scale='reds',
- hover_data=['Details']
- )
- return fig, "" # Reset clicked-ip because of bug
-
- # Callback to display details and related IPs
- @app.callback(
- Output('details-and-ip-output', 'children'),
- [Input('vulnerability-treemap', 'clickData')]
- )
- def display_details_and_ips(clickData):
- if clickData is not None:
- clicked_vuln = clickData['points'][0]['label'].split('<br>')[0]
- details = clickData['points'][0]['customdata'][0]
- matching_ips = vulnerability_data[vulnerability_data['NVT Name'] == clicked_vuln]['IP'].unique()
-
- return html.Div([
- html.Pre(f'Details of Selected Vulnerability:\n{details}'),
- html.H4("Related IPs with the same vulnerability:"),
- html.Div([html.A(ip, href='#', id={'type': 'dynamic-ip', 'index': ip}, style={'marginRight': '10px', 'cursor': 'pointer'}) for ip in matching_ips])
- ])
- return 'Click on a vulnerability to see details and related IPs.'
-
- if __name__ == '__main__':
- app.run(debug=True)
|