Browse Source

README-en.md edited online with Bitbucket

Jose R Ortiz Ubarri 8 years ago
parent
commit
38d5f8421b
1 changed files with 4 additions and 5 deletions
  1. 4
    5
      README-en.md

+ 4
- 5
README-en.md View File

@@ -165,15 +165,14 @@ This function should work similarly as the `DiagonalLeft` function but produce a
165 165
 **Figure 5** - (a) A drawing with a white background and red dots. (b) When the user clicks on the right diagonal line button (`DiagonalRight`) and clicks the cell shown, (c) a right diagonal line that expands towards the top to the right and towards the bottom to the left of the cell clicked is drawn, until it finds a cell with a different color from the color of the background. 
166 166
 
167 167
 
168
-### Exercise 2: Implementar las funciones para hacer funcionar los botones de dibujar cuadrados, triángulos y círculos.
168
+### Exercise 2: Implement the functions that operate the buttons for drawing square, triangles and circles. 
169 169
 
170
+Now, you will implement the functionality so that you can draw squares, circles and triangles. The **size** of the figure drawn will depend on the size select with sliding bar in the interface.
170 171
 
171
-Ahora implementarás la funcionalidad para dibujar cuadrados, círculos y líneas. El **tamaño** de la figura dibujada dependerá del tamaño seleccionado con la barra deslizante en la interface.
172 172
 
173
+#### 2a: Squares 
173 174
 
174
-#### 2a: Cuadrados 
175
-
176
-Para los cuadrados, ¡lo más fácil es pensar en ellos como si fueran cebollas! Un cuadrado de tamaño 1 es simplemente la celda marcada por el usuario. Un cuadrado de tamaño 2 es la celda marcada, cubierta por una capa de celdas de tamaño 1, y así sucesivamente. En otras palabras, un cuadrado de tamaño $n$ tendrá alto = ancho = $2n-1$.
175
+For the squares, the easiest way to think of it is as if they were onions! A square of size 1 is simply the cell clicked by the user. A square of size 2 is the cell clicked by the user, covered by a layer of cells of size 1, and so on. In other words, a square of size $n$ will have height = width = $2n-1$.
177 176
 
178 177
 
179 178