Browse Source

Fixing markdown README.md. Removed most of the diagnostics

Rafael Arce Nazario 9 years ago
parent
commit
cf43906dc4
1 changed files with 51 additions and 74 deletions
  1. 51
    74
      README.md

+ 51
- 74
README.md View File

9
 Una de las ventajas de utilizar programas de computadoras es que podemos realizar tareas repetitivas fácilmente. Los ciclos como `for`, `while`, y `do-while` son estructuras de control que nos permiten repetir un conjunto de instrucciones. A estas estructuras también se les llama *estructuras de repetición*.  En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para practicar el uso de ciclos anidados en la manipulación de arreglos bi-dimensionales.
9
 Una de las ventajas de utilizar programas de computadoras es que podemos realizar tareas repetitivas fácilmente. Los ciclos como `for`, `while`, y `do-while` son estructuras de control que nos permiten repetir un conjunto de instrucciones. A estas estructuras también se les llama *estructuras de repetición*.  En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para practicar el uso de ciclos anidados en la manipulación de arreglos bi-dimensionales.
10
 
10
 
11
 
11
 
12
-##Objetivos:
12
+## Objetivos:
13
 
13
 
14
 1. Aplicar ciclos anidados y estructuras de control para manipular arreglos bi-dimensionales y  extraer mensajes escondidos en imágenes.
14
 1. Aplicar ciclos anidados y estructuras de control para manipular arreglos bi-dimensionales y  extraer mensajes escondidos en imágenes.
15
 
15
 
18
 3. Utilizar la representación binaria de caracteres.
18
 3. Utilizar la representación binaria de caracteres.
19
 
19
 
20
 
20
 
21
-##Pre-Lab:
21
+## Pre-Lab:
22
 
22
 
23
 Antes de llegar al laboratorio debes haber:
23
 Antes de llegar al laboratorio debes haber:
24
 
24
 
67
 
67
 
68
 ![figure1.png](images/figure1.png)
68
 ![figure1.png](images/figure1.png)
69
 
69
 
70
-**Figura 1.** Distribución de bits para las tonalidades de rojo, verde y azul dentro de la representación RGB.  Cada tonalidad puede tener valores entre 0x00 (los ocho bits en 0) y 0xFF (los 8 bits en 1). 
70
+**Figura 1.** Distribución de bits para las tonalidades de rojo, verde y azul dentro de la representación RGB.  Cada tonalidad puede tener valores entre 0x00 (los ocho bits en 0) y 0xFF (los 8 bits en 1).
71
 
71
 
72
 ---
72
 ---
73
 
73
 
176
 Podemos hacer lo siguiente para empotrar cada trío de bits  `b2, b1, b0`:
176
 Podemos hacer lo siguiente para empotrar cada trío de bits  `b2, b1, b0`:
177
 
177
 
178
 ```
178
 ```
179
-Datos de entrada: p: un píxel 
179
+Datos de entrada: p: un píxel
180
     b2,b1,b0: el trío de bits
180
     b2,b1,b0: el trío de bits
181
 Dato de salida: modifiedPixel: el píxel con el trío empotrado
181
 Dato de salida: modifiedPixel: el píxel con el trío empotrado
182
 ========
182
 ========
183
-1. r = componente rojo de p 
183
+1. r = componente rojo de p
184
 2. g = componente verde de p
184
 2. g = componente verde de p
185
 3. b = componente azul de p
185
 3. b = componente azul de p
186
 4. "limpiar" o apagar" los bits menos significativos de r,g,b
186
 4. "limpiar" o apagar" los bits menos significativos de r,g,b
232
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
232
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
233
 
233
 
234
 
234
 
235
-Pregunta: 
235
+Pregunta:
236
 ¿Qué mensaje está escondido (usando la técnica del bit menos significativo) en una imagen cuyos primeros 8 píxeles son:
236
 ¿Qué mensaje está escondido (usando la técnica del bit menos significativo) en una imagen cuyos primeros 8 píxeles son:
237
 
237
 
238
 
238
 
239
 ```
239
 ```
240
 0x545554 0x666667 0x444544 0x333232
240
 0x545554 0x666667 0x444544 0x333232
241
-0xff0000 0x0100ff 0x00ff00 0x10aaba 
241
+0xff0000 0x0100ff 0x00ff00 0x10aaba
242
 ```
242
 ```
243
 
243
 
244
 Explica tu respuesta.
244
 Explica tu respuesta.
247
 
247
 
248
 ---
248
 ---
249
 
249
 
250
-!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-01.html"
251
-
252
-!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-02.html"
253
-
254
-!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-03.html"
255
-
256
-!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-04.html"
257
 
250
 
258
 !INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-05.html"
251
 !INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-05.html"
259
 
252
 
260
-!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-06.html"
261
-
262
-!INCLUDE "../../eip-diagnostic/steganography/es/diag-steganography-07.html"
263
-
264
 ---
253
 ---
265
 
254
 
266
 ---
255
 ---
267
 
256
 
268
 
257
 
269
-##Sesión de laboratorio:
258
+## Sesión de laboratorio:
270
 
259
 
271
 En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para extraer mensajes ocultos en imágenes.
260
 En la experiencia de laboratorio de hoy completarás una aplicación de esteganografía para extraer mensajes ocultos en imágenes.
272
 
261
 
273
-###Ejercicio 1: Extraer el mensaje binario
262
+### Ejercicio 1: Extraer el mensaje binario
274
 
263
 
275
-####Instrucciones
264
+#### Instrucciones
276
 
265
 
277
 
266
 
278
 1. Carga a QtCreator el proyecto `Steganography` haciendo doble "click" en el archivo `Steganography.pro` en el directorio `Documents/eip/Repetitions-Steganography` de tu computadora. También puedes ir a `http://bitbucket.org/eip-uprrp/repetitions-steganography` para descargar la carpeta `Repetitions-Steganography` a tu computadora.
267
 1. Carga a QtCreator el proyecto `Steganography` haciendo doble "click" en el archivo `Steganography.pro` en el directorio `Documents/eip/Repetitions-Steganography` de tu computadora. También puedes ir a `http://bitbucket.org/eip-uprrp/repetitions-steganography` para descargar la carpeta `Repetitions-Steganography` a tu computadora.
279
- 
280
 
268
 
281
     El proyecto contiene el esqueleto de una aplicación para recuperar mensajes empotrados en imágenes. Los mensajes que estarás recobrando se empotraron utilizando la técnica del bit menos significativo. El final de cada mensaje se codificó utilizando el caracter ASCII con código binario `00000000`.
269
     El proyecto contiene el esqueleto de una aplicación para recuperar mensajes empotrados en imágenes. Los mensajes que estarás recobrando se empotraron utilizando la técnica del bit menos significativo. El final de cada mensaje se codificó utilizando el caracter ASCII con código binario `00000000`.
282
 
270
 
291
     Por ejemplo, si los primeros píxeles de la imagen fuesen los siguientes,
279
     Por ejemplo, si los primeros píxeles de la imagen fuesen los siguientes,
292
 
280
 
293
     ````
281
     ````
294
-    0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00 
282
+    0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00
295
     0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
283
     0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
296
     0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .,
284
     0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .,
297
     ````
285
     ````
305
 Para poder implementar el algoritmo de extracción del mensaje, debes entender cómo fue empotrado el mensaje. Si es necesario, repasa la sección “Empotrando un mensaje en una imagen”.
293
 Para poder implementar el algoritmo de extracción del mensaje, debes entender cómo fue empotrado el mensaje. Si es necesario, repasa la sección “Empotrando un mensaje en una imagen”.
306
 
294
 
307
 
295
 
308
-###Ejercicio 2: Interpretar el mensaje
296
+### Ejercicio 2: Interpretar el mensaje
309
 
297
 
310
-####Instrucciones
298
+#### Instrucciones
311
 
299
 
312
 
300
 
313
 1. Completa la función `binaryStringToMessage` que recibe el "string" de `0`'s y `1`'s extraido de la imagen para que devuelva el mensaje oculto. Puedes aprovechar la función `binStringToChar` para convertir "substrings" de 8 `0`'s y `1`'s en el caracter que le corresponde.
301
 1. Completa la función `binaryStringToMessage` que recibe el "string" de `0`'s y `1`'s extraido de la imagen para que devuelva el mensaje oculto. Puedes aprovechar la función `binStringToChar` para convertir "substrings" de 8 `0`'s y `1`'s en el caracter que le corresponde.
328
 
316
 
329
 ---
317
 ---
330
 
318
 
331
-##Entrega
319
+## Entrega
332
 
320
 
333
 Utiliza "Entrega" en Moodle para entregar el archivo `steganography.cpp` que contiene las funciones `ExtractMessage` y `binaryStringToMessage`. Recuerda utilizar buenas prácticas de programación, incluir el nombre de los programadores y documentar tu programa.
321
 Utiliza "Entrega" en Moodle para entregar el archivo `steganography.cpp` que contiene las funciones `ExtractMessage` y `binaryStringToMessage`. Recuerda utilizar buenas prácticas de programación, incluir el nombre de los programadores y documentar tu programa.
334
 
322
 
358
 
346
 
359
 One of the advantages of using computer programs is that we can easily implement repetitive tasks. Structures such as the `for`, `while`, and `do-while` allow us to repeat a block of instructions as many times as needed. These structures are also referred to as *repetition structures*. In today's laboratory experience you will complete a steganography application to practice the use of nested loops and the manipulation of bidimensional arrays.
347
 One of the advantages of using computer programs is that we can easily implement repetitive tasks. Structures such as the `for`, `while`, and `do-while` allow us to repeat a block of instructions as many times as needed. These structures are also referred to as *repetition structures*. In today's laboratory experience you will complete a steganography application to practice the use of nested loops and the manipulation of bidimensional arrays.
360
 
348
 
361
-##Objectives:
349
+## Objectives:
362
 
350
 
363
 1. Apply nested loops and decision structures to manipulate bidimensional arrays and extract messages hidden in images.
351
 1. Apply nested loops and decision structures to manipulate bidimensional arrays and extract messages hidden in images.
364
 
352
 
367
 3. Use the binary representation of characters.
355
 3. Use the binary representation of characters.
368
 
356
 
369
 
357
 
370
-##Pre-Lab:
358
+## Pre-Lab:
371
 
359
 
372
 Before coming to the laboratory session you should have:
360
 Before coming to the laboratory session you should have:
373
 
361
 
388
 ---
376
 ---
389
 
377
 
390
 
378
 
391
-##Steganography
379
+## Steganography
392
 
380
 
393
-Steganography is the science of camouflaging the presence of hidden messages in legitimate carriers (seemingly harmless files). This science has been used by cybercriminals to inflict damage to computer systems and by (old style) terrorists to encode hidden messages transmitted through the internet. There is claim that Al-Qaeda may have used steganography to encode messages into images, and then transport them via e-mail, and possibly via USENET, to prepare and execute the September 11,  2001 terrorist attack. 
381
+Steganography is the science of camouflaging the presence of hidden messages in legitimate carriers (seemingly harmless files). This science has been used by cybercriminals to inflict damage to computer systems and by (old style) terrorists to encode hidden messages transmitted through the internet. There is claim that Al-Qaeda may have used steganography to encode messages into images, and then transport them via e-mail, and possibly via USENET, to prepare and execute the September 11,  2001 terrorist attack.
394
 
382
 
395
 Steganography has some lawful uses too [1]:
383
 Steganography has some lawful uses too [1]:
396
 
384
 
397
-* A medical imaging laboratory can embed a patient's information into the images, thus preventing against fraud and/or patient misdiagnosis. 
385
+* A medical imaging laboratory can embed a patient's information into the images, thus preventing against fraud and/or patient misdiagnosis.
398
 * We can use hidden information to identify the legitimate owner of a document or image. If the document is leaked, or distributed to unauthorized parties, one can trace it back to the rightful owner and perhaps discover which party broke the license distribution agreement.
386
 * We can use hidden information to identify the legitimate owner of a document or image. If the document is leaked, or distributed to unauthorized parties, one can trace it back to the rightful owner and perhaps discover which party broke the license distribution agreement.
399
 
387
 
400
 In this laboratory experience you will implement a simple algorithm to extract hidden messages from steganography images.
388
 In this laboratory experience you will implement a simple algorithm to extract hidden messages from steganography images.
401
 
389
 
402
 ---
390
 ---
403
 
391
 
404
-##Image Editing
392
+## Image Editing
405
 
393
 
406
 In this laboratory experience, you will recover secret messages that have been hidden in an image. To be able to carry out your task, you should understand some concepts related to images, be familiar with the methods of the `QImage` class in `Qt`,  and with functions to work with data of the `QRgb` type.
394
 In this laboratory experience, you will recover secret messages that have been hidden in an image. To be able to carry out your task, you should understand some concepts related to images, be familiar with the methods of the `QImage` class in `Qt`,  and with functions to work with data of the `QRgb` type.
407
 
395
 
408
-###Pixels
396
+### Pixels
409
 
397
 
410
 The smallest element in an image is called a *pixel*. This unit consists of a single color. Since each color is a combination of tones for the primary red, green and blue colors, it is coded as an unsigned integer whose bytes represent the tones of red, green and blue of the pixel (Figure 1). This combination is called the color's *RGB* which is an acronym for "Red-Green-Blue". For example, a pure red pixel has an RGB representation of `0x00ff0000`, while a white pixel has an RGB representation of `0x00FFFFFF` (since the color white is a combination of tones of red, green and blue in all of their intensity).
398
 The smallest element in an image is called a *pixel*. This unit consists of a single color. Since each color is a combination of tones for the primary red, green and blue colors, it is coded as an unsigned integer whose bytes represent the tones of red, green and blue of the pixel (Figure 1). This combination is called the color's *RGB* which is an acronym for "Red-Green-Blue". For example, a pure red pixel has an RGB representation of `0x00ff0000`, while a white pixel has an RGB representation of `0x00FFFFFF` (since the color white is a combination of tones of red, green and blue in all of their intensity).
411
 
399
 
419
 
407
 
420
 `Qt` uses the `QRgb` type to represent `RGB` values. Using the functions that are described below we can perform important operations to analyze images, such as obtaining the RGB of each pixel in an image, and to obtain the red, green and blue components of the `QRgb` value of the pixel.
408
 `Qt` uses the `QRgb` type to represent `RGB` values. Using the functions that are described below we can perform important operations to analyze images, such as obtaining the RGB of each pixel in an image, and to obtain the red, green and blue components of the `QRgb` value of the pixel.
421
 
409
 
422
-###Library
410
+### Library
423
 
411
 
424
 In today's laboratory experience you will use the `QImage` class. This class allows you to access the data in the pixels of an image to manipulate it. The documentation for the `QImage` class can be found in http://doc.qt.io/qt-4.8/qimage.html.
412
 In today's laboratory experience you will use the `QImage` class. This class allows you to access the data in the pixels of an image to manipulate it. The documentation for the `QImage` class can be found in http://doc.qt.io/qt-4.8/qimage.html.
425
 
413
 
430
 
418
 
431
 The objects of the `QImage` class have the following methods that will be useful for today's laboratory experience:
419
 The objects of the `QImage` class have the following methods that will be useful for today's laboratory experience:
432
 
420
 
433
-* `width()`      // returns the positive integer value for the image's width 
434
-* `height()`      // returns the positive integer value for the image's height 
421
+* `width()`      // returns the positive integer value for the image's width
422
+* `height()`      // returns the positive integer value for the image's height
435
 * `pixel(i, j)`       // returns the `QRgb` for the pixel in position `(i,j)`
423
 * `pixel(i, j)`       // returns the `QRgb` for the pixel in position `(i,j)`
436
 
424
 
437
 
425
 
443
 
431
 
444
 
432
 
445
 
433
 
446
-####Examples:
434
+#### Examples:
447
 
435
 
448
 1. If the following `4 x 4` image of pixels represents the object `origImage`,
436
 1. If the following `4 x 4` image of pixels represents the object `origImage`,
449
 
437
 
483
 ---
471
 ---
484
 
472
 
485
 
473
 
486
-###Embedding a message into an image
474
+### Embedding a message into an image
487
 
475
 
488
 One of the simplest methods of *hidding* a message in an image is by encoding the message into the least significant bits of the image pixel's colors. This method effectively hides the message in the image because changing the least significant bit of a 8-bit color is barely noticeable by the human observer.  
476
 One of the simplest methods of *hidding* a message in an image is by encoding the message into the least significant bits of the image pixel's colors. This method effectively hides the message in the image because changing the least significant bit of a 8-bit color is barely noticeable by the human observer.  
489
 
477
 
502
 
490
 
503
 ![main3.png](images/main3.png)
491
 ![main3.png](images/main3.png)
504
 
492
 
505
-Assume that each square is a pixel of the image. 
493
+Assume that each square is a pixel of the image.
506
 
494
 
507
 The first step would be to obtain the ASCII representation of the message. The bits of the ASCII representation are the bits we will encode into the colors of the pixels. The ASCII representation of `Dog` is:
495
 The first step would be to obtain the ASCII representation of the message. The bits of the ASCII representation are the bits we will encode into the colors of the pixels. The ASCII representation of `Dog` is:
508
 
496
 
527
 b2,b1,b0: the trio of bits
515
 b2,b1,b0: the trio of bits
528
 Output: modifiedPixel: the pixel with the embedded trio
516
 Output: modifiedPixel: the pixel with the embedded trio
529
 ========
517
 ========
530
-1. r = red component of p 
518
+1. r = red component of p
531
 2. g = green component of p
519
 2. g = green component of p
532
 3. b = blue component of p
520
 3. b = blue component of p
533
 4. clear the least significant bits of r,g,b
521
 4. clear the least significant bits of r,g,b
576
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
564
 | `0x00 00 00` | `111`  | `0x01 01 01`  |
577
 
565
 
578
 
566
 
579
-Question: 
567
+Question:
580
 What message is hidden (using the least significant bit technique) in an image whose first 8 pixels are:
568
 What message is hidden (using the least significant bit technique) in an image whose first 8 pixels are:
581
 
569
 
582
 ```
570
 ```
583
 0x545554 0x666667 0x444544 0x333232
571
 0x545554 0x666667 0x444544 0x333232
584
-0xff0000 0x0100ff 0x00ff00 0x10aaba 
572
+0xff0000 0x0100ff 0x00ff00 0x10aaba
585
 ```
573
 ```
586
 
574
 
587
 Explain your answer.
575
 Explain your answer.
591
 
579
 
592
 ---
580
 ---
593
 
581
 
594
-!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-01.html"
595
-
596
-!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-02.html"
597
-
598
-!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-03.html"
599
-
600
-!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-04.html"
601
-
602
 !INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-05.html"
582
 !INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-05.html"
603
 
583
 
604
-!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-06.html"
605
-
606
-!INCLUDE "../../eip-diagnostic/steganography/en/diag-steganography-07.html"
607
 
584
 
608
 ---
585
 ---
609
 
586
 
614
 
591
 
615
 In today's laboratory experience you will complete a steganography application to extract hidden messages from images.
592
 In today's laboratory experience you will complete a steganography application to extract hidden messages from images.
616
 
593
 
617
-###Exercise 1: Extract the binary message
594
+### Exercise 1: Extract the binary message
618
 
595
 
619
-####Instructions
596
+#### Instructions
620
 
597
 
621
 1. Load the Qt project called `Steganography` by double-clicking on the `Steganography.pro` file in the `Documents/eip/Repetitions-Steganography` folder of your computer. You can also go to `http://bitbucket.org/eip-uprrp/repetitions-steganography` to download the `Repetitions-Steganography` folder to your computer.
598
 1. Load the Qt project called `Steganography` by double-clicking on the `Steganography.pro` file in the `Documents/eip/Repetitions-Steganography` folder of your computer. You can also go to `http://bitbucket.org/eip-uprrp/repetitions-steganography` to download the `Repetitions-Steganography` folder to your computer.
622
 
599
 
623
-The project contains the skeleton for an application to recover embedded messages from images. The messages that you will be recovering have been  embedded using the least significant bit technique. The end of each message was encoded by using the ASCII character with binary code `00000000`. 
600
+   The project contains the skeleton for an application to recover embedded messages from images. The messages that you will be recovering have been  embedded using the least significant bit technique. The end of each message was encoded by using the ASCII character with binary code `00000000`.
624
 
601
 
625
 2. Compile and run the program. You should obtain an interface that looks similar to:
602
 2. Compile and run the program. You should obtain an interface that looks similar to:
626
 
603
 
627
-![img1.png](images/img1.png)
604
+    ![img1.png](images/img1.png)
628
 
605
 
629
 3. The button `Load Image` has already been programmed to allow the user to load an image and display it. Your task is to program the functionality of the button `Retrieve Message` to analyze the image and extract the hidden message. The hidden message should be displayed in the `Write a message` window.
606
 3. The button `Load Image` has already been programmed to allow the user to load an image and display it. Your task is to program the functionality of the button `Retrieve Message` to analyze the image and extract the hidden message. The hidden message should be displayed in the `Write a message` window.
630
 
607
 
631
 4. You will be working with the `steganography.cpp` file. Complete the `ExtractMessage` function that receives a steganography image so it extracts the digits of the binary message encoded in the image and stores them in a string. The function should invoke another function `binaryStringToMessage` that converts the string from `0`'s and `1`'s in the message's characters and returns the hidden message.
608
 4. You will be working with the `steganography.cpp` file. Complete the `ExtractMessage` function that receives a steganography image so it extracts the digits of the binary message encoded in the image and stores them in a string. The function should invoke another function `binaryStringToMessage` that converts the string from `0`'s and `1`'s in the message's characters and returns the hidden message.
632
 
609
 
633
 
610
 
634
-For example, if the first few pixels the image were these:
611
+    For example, if the first few pixels the image were these:
635
 
612
 
636
-````
637
-0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00 
638
-0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
639
-0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .
640
-````
613
+  ````
614
+  0x98 99 98 0x00 00 01 0x00 00 00 0x01 01 00
615
+  0x01 01 01 0x01 00 01 0x01 00 00 0x01 01 01
616
+  0xf0 ea 00 0x44 00 f0 0x00 aa 22 . . . .
617
+  ````
641
 
618
 
642
-your `ExtractMessage` function would extract the least significant bits of each colors component and construct the `string`: `"010001000110111101100111000000000.."`.
619
+  your `ExtractMessage` function would extract the least significant bits of each colors component and construct the `string`: `"010001000110111101100111000000000.."`.
643
 
620
 
644
-Notice that your algorithm should have some mechanism for detecting if the last 8 character block were all `0`. When this happens, the algorithm should stop reading the pixels.
621
+  Notice that your algorithm should have some mechanism for detecting if the last 8 character block were all `0`. When this happens, the algorithm should stop reading the pixels.
645
 
622
 
646
-The string of binary digits should then be sent to another function `binaryStringToMessage` (see Exercise 2) that interprets the `0`'s and `1`'s as the bits of ASCII characters. In the example, the string `”010001000110111101100111000000000”` would be decoded to "Dog"
647
-(because `01000100` corresponds to 'D', `01101111` is 'o',  `01100111` is 'g', and a `00000000` symbolizes the end of the string.)
623
+  The string of binary digits should then be sent to another function `binaryStringToMessage` (see Exercise 2) that interprets the `0`'s and `1`'s as the bits of ASCII characters. In the example, the string `”010001000110111101100111000000000”` would be decoded to "Dog"
624
+  (because `01000100` corresponds to 'D', `01101111` is 'o',  `01100111` is 'g', and a `00000000` symbolizes the end of the string.)
648
 
625
 
649
-To implement the algorithm for extracting the message, you should understand how the message was encoded. If necessary, review the "Embedding a message into an image" section.
626
+  To implement the algorithm for extracting the message, you should understand how the message was encoded. If necessary, review the "Embedding a message into an image" section.
650
 
627
 
651
 
628
 
652
-###Exercise 2: Interpreting the message
629
+### Exercise 2: Interpreting the message
653
 
630
 
654
 
631
 
655
-####Instructions
632
+#### Instructions
656
 
633
 
657
 1. Complete the `binaryStringToMessage` function that receives the string of `0`'s and `1`'s extracted from the image so it returns the hidden message. You can use the `binStringToChar` function to convert substrings of 8 `0`'s and `1`'s in its corresponding character.
634
 1. Complete the `binaryStringToMessage` function that receives the string of `0`'s and `1`'s extracted from the image so it returns the hidden message. You can use the `binStringToChar` function to convert substrings of 8 `0`'s and `1`'s in its corresponding character.
658
 
635
 
661
     * `pug.png`, contains the message "Hello World !"
638
     * `pug.png`, contains the message "Hello World !"
662
     * `uprTorre.png`, contains the message "CCOM3033 - Steganography Lab Rules!!!"
639
     * `uprTorre.png`, contains the message "CCOM3033 - Steganography Lab Rules!!!"
663
 
640
 
664
-3. Once you validate your program using the test images, use the program to analyze the following images. 
641
+3. Once you validate your program using the test images, use the program to analyze the following images.
665
 
642
 
666
     * `gallito.png`
643
     * `gallito.png`
667
     * `puppy.png`
644
     * `puppy.png`
672
 
649
 
673
 ---
650
 ---
674
 
651
 
675
-##Deliverables
652
+## Deliverables
676
 
653
 
677
 Use "Deliverables" in Moodle to upload the `steganography.cpp` file that contains the `ExtractMessage` and `binaryStringToMessage` functions. Remember to use good programming techniques, include the names of the programmers involved, and to document your program.
654
 Use "Deliverables" in Moodle to upload the `steganography.cpp` file that contains the `ExtractMessage` and `binaryStringToMessage` functions. Remember to use good programming techniques, include the names of the programmers involved, and to document your program.
678
 
655
 
681
 ---
658
 ---
682
 
659
 
683
 
660
 
684
-##References 
661
+## References
685
 
662
 
686
-[1] Rocha, Anderson, and Siome Goldenstein. "Steganography and steganalysis in digital multimedia: Hype or hallelujah?." Revista de Informática Teórica e Aplicada 15.1 (2008): 83-110.
663
+[1] Rocha, Anderson, and Siome Goldenstein. "Steganography and steganalysis in digital multimedia: Hype or hallelujah?." Revista de Informática Teórica e Aplicada 15.1 (2008): 83-110.