|
@@ -0,0 +1,337 @@
|
|
1
|
+#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do this in one cpp file
|
|
2
|
+#include "catch.hpp"
|
|
3
|
+#include <queue>
|
|
4
|
+
|
|
5
|
+#include <iostream>
|
|
6
|
+using namespace std;
|
|
7
|
+
|
|
8
|
+class BTNode {
|
|
9
|
+public:
|
|
10
|
+ int key;
|
|
11
|
+ BTNode *left, *right;
|
|
12
|
+ BTNode(int k = 0, BTNode *l = NULL, BTNode *r = NULL) : key(k), left(l), right(r) {}
|
|
13
|
+};
|
|
14
|
+
|
|
15
|
+class BST {
|
|
16
|
+private:
|
|
17
|
+ BTNode *root;
|
|
18
|
+
|
|
19
|
+public:
|
|
20
|
+ BST(): root(NULL) {}
|
|
21
|
+ void insert(int k);
|
|
22
|
+ void insertRec(int k);
|
|
23
|
+ void insertRec(int k, BTNode *r);
|
|
24
|
+
|
|
25
|
+ void remove(int k);
|
|
26
|
+ void remove(int k, BTNode *r);
|
|
27
|
+ void recDisplay(ostream &out) const;
|
|
28
|
+ void recDisplay(ostream &out, BTNode *cur, int dist) const;
|
|
29
|
+
|
|
30
|
+ BTNode *search(int k) const;
|
|
31
|
+ BTNode *searchRec(int k) const;
|
|
32
|
+ BTNode *searchRec(int k, BTNode *r) const;
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+ int getHeight() const;
|
|
36
|
+ int getHeight(BTNode *r) const;
|
|
37
|
+ int sum() const;
|
|
38
|
+ int sum(BTNode *r) const;
|
|
39
|
+ int leafQty() const;
|
|
40
|
+ int leafQty(BTNode *n) const;
|
|
41
|
+ int parentsOfTwo() const;
|
|
42
|
+ int parentsOfTwo(BTNode *n) const;
|
|
43
|
+
|
|
44
|
+ string InOrder() const;
|
|
45
|
+ void InOrder(BTNode *n, string &st) const;
|
|
46
|
+
|
|
47
|
+ string BFS() const;
|
|
48
|
+};
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+// function search:
|
|
53
|
+// Given k, a key to search, returns a pointer to the first
|
|
54
|
+// node that contains such key. If not found returns a NULL pointer.
|
|
55
|
+
|
|
56
|
+BTNode* BST::search(int k) const {
|
|
57
|
+ BTNode* cur = root;
|
|
58
|
+ while (cur) {
|
|
59
|
+ if (k == cur->key) {return cur;}
|
|
60
|
+ // Found
|
|
61
|
+ else if (k < cur->key) { cur = cur->left; }
|
|
62
|
+ else { cur = cur->right; }
|
|
63
|
+ }
|
|
64
|
+ return NULL;
|
|
65
|
+}
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+// function insert:
|
|
69
|
+// Given k, a key to insert, inserts into the BST.
|
|
70
|
+// In this implementation if the key already exists in the tree
|
|
71
|
+// it will be inserted in the RIGHT subtree of the existing key.
|
|
72
|
+
|
|
73
|
+void BST::insert(int k) {
|
|
74
|
+ BTNode *cur;
|
|
75
|
+ BTNode *n = new BTNode(k);
|
|
76
|
+
|
|
77
|
+ if (!root) {
|
|
78
|
+ // This tree is empty, the new node is the root!
|
|
79
|
+ root = n;
|
|
80
|
+ }
|
|
81
|
+ else {
|
|
82
|
+ // Lets search the tree for a place to insert....
|
|
83
|
+ cur = root;
|
|
84
|
+ while (cur) {
|
|
85
|
+ if (k < cur->key){
|
|
86
|
+ // The value to insert is less than current node
|
|
87
|
+ if (cur->left == NULL) {
|
|
88
|
+ // If we have reached a node who lacks a left child
|
|
89
|
+ // then our new node will be the left child
|
|
90
|
+ cur->left = n;
|
|
91
|
+ cur = NULL;
|
|
92
|
+ }
|
|
93
|
+ else {
|
|
94
|
+ // keep looking for a place to insert, on the left subtree
|
|
95
|
+ cur = cur->left;
|
|
96
|
+ }
|
|
97
|
+ }
|
|
98
|
+ else {
|
|
99
|
+ // The value to insert is greater or equal than current node
|
|
100
|
+ if (cur->right == NULL){
|
|
101
|
+ // If we have reached a node who lacks a right child
|
|
102
|
+ // then our new node will be the right child
|
|
103
|
+ cur->right = n;
|
|
104
|
+ cur = NULL;
|
|
105
|
+ }
|
|
106
|
+ else {
|
|
107
|
+ // keep looking for a place to insert, on the right subtree
|
|
108
|
+ cur = cur->right;
|
|
109
|
+ }
|
|
110
|
+ }
|
|
111
|
+ }
|
|
112
|
+ }
|
|
113
|
+}
|
|
114
|
+
|
|
115
|
+// functions recDisplay:
|
|
116
|
+// Print the tree to the standard output.
|
|
117
|
+
|
|
118
|
+void BST::recDisplay(ostream &out) const {
|
|
119
|
+ recDisplay(out, root, 0);
|
|
120
|
+}
|
|
121
|
+
|
|
122
|
+void BST::recDisplay(ostream &out, BTNode *cur, int dist) const{
|
|
123
|
+ if (cur) {
|
|
124
|
+ if (cur->right) recDisplay(out, cur->right, dist + 1);
|
|
125
|
+ for (int i = 0; i < dist; i++) cout << " ";
|
|
126
|
+ out << cur->key << endl;
|
|
127
|
+ if (cur->left) recDisplay(out, cur->left, dist + 1);
|
|
128
|
+ }
|
|
129
|
+}
|
|
130
|
+
|
|
131
|
+// functions remove:
|
|
132
|
+// Given k, a key to remove, removes the first node that it finds with
|
|
133
|
+// such key.
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+void BST::remove(int k) {
|
|
137
|
+ remove(k, root);
|
|
138
|
+}
|
|
139
|
+
|
|
140
|
+void BST::remove(int k, BTNode *r) {
|
|
141
|
+ BTNode *parent = NULL;
|
|
142
|
+ BTNode *cur = r;
|
|
143
|
+ while (cur) { // Search for node
|
|
144
|
+ if (cur->key == k) { // Node found
|
|
145
|
+ if (cur->left == NULL && cur->right == NULL) { // Remove leaf
|
|
146
|
+ cout << "cur is a leaf: " << cur->key << endl;
|
|
147
|
+ if (!parent) { // Node is root
|
|
148
|
+ root = NULL;
|
|
149
|
+ }
|
|
150
|
+ else if (parent->left == cur)
|
|
151
|
+ parent->left = NULL;
|
|
152
|
+ else
|
|
153
|
+ parent->right = NULL;
|
|
154
|
+ delete cur;
|
|
155
|
+ }
|
|
156
|
+ else if (cur->left && cur->right == NULL) { // Remove node with only left child
|
|
157
|
+ if (!parent) // Node is root
|
|
158
|
+ root = cur->left;
|
|
159
|
+ else if (parent->left == cur)
|
|
160
|
+ parent->left = cur->left;
|
|
161
|
+ else
|
|
162
|
+ parent->right = cur->left;
|
|
163
|
+ delete cur;
|
|
164
|
+ }
|
|
165
|
+ else if (cur->left == NULL && cur->right) { // Remove node with only right child
|
|
166
|
+ if (!parent) // Node is root
|
|
167
|
+ root = cur->right;
|
|
168
|
+ else if (parent->left == cur)
|
|
169
|
+ parent->left = cur->right;
|
|
170
|
+ else
|
|
171
|
+ parent->right = cur->right;
|
|
172
|
+ delete cur;
|
|
173
|
+ }
|
|
174
|
+ else { // Remove node with two children
|
|
175
|
+ // Find successor (leftmost child of right subtree)
|
|
176
|
+ BTNode *suc = cur->right;
|
|
177
|
+
|
|
178
|
+ while (suc->left )
|
|
179
|
+ suc = suc->left;
|
|
180
|
+ int successorData = suc->key;
|
|
181
|
+ remove(suc->key, cur); // Remove successor
|
|
182
|
+ cur->key = successorData;
|
|
183
|
+ }
|
|
184
|
+ return; // Node found and removed
|
|
185
|
+ }
|
|
186
|
+ else if (cur->key < k) { // Search right
|
|
187
|
+ parent = cur;
|
|
188
|
+ cur = cur->right;
|
|
189
|
+ }
|
|
190
|
+ else { // Search left
|
|
191
|
+ parent = cur;
|
|
192
|
+ cur = cur->left;
|
|
193
|
+ }
|
|
194
|
+ }
|
|
195
|
+ return; // Node not found
|
|
196
|
+}
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+// function getHeight:
|
|
200
|
+// Returns the height of the tree.
|
|
201
|
+
|
|
202
|
+int BST::getHeight() const {
|
|
203
|
+ return getHeight(root);
|
|
204
|
+}
|
|
205
|
+
|
|
206
|
+int BST::getHeight(BTNode *r) const {
|
|
207
|
+ if (!r) return -1;
|
|
208
|
+
|
|
209
|
+ int leftHeight = getHeight(r->left);
|
|
210
|
+ int rightHeight = getHeight(r->right);
|
|
211
|
+ return 1 + max(leftHeight, rightHeight);
|
|
212
|
+}
|
|
213
|
+
|
|
214
|
+// function sum:
|
|
215
|
+// Returns the sum of all keys in the tree.
|
|
216
|
+
|
|
217
|
+int BST::sum() const { return sum(root);}
|
|
218
|
+
|
|
219
|
+int BST::sum(BTNode *n) const {
|
|
220
|
+ if (!n) return 0;
|
|
221
|
+ else return n->key + sum(n->left) + sum(n->right);
|
|
222
|
+}
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+// function leafQty:
|
|
226
|
+// Returns the number of leaves in the tree.
|
|
227
|
+
|
|
228
|
+int BST::leafQty() const { return leafQty(root);}
|
|
229
|
+
|
|
230
|
+int BST::leafQty(BTNode *n) const {
|
|
231
|
+ if (!n) return 0;
|
|
232
|
+ if (n->left == NULL && n->right == NULL) return 1;
|
|
233
|
+ else return leafQty(n->left) + leafQty(n->right);
|
|
234
|
+}
|
|
235
|
+
|
|
236
|
+// function parentsOfTwo:
|
|
237
|
+// Returns the number of nodes that are parents of two children.
|
|
238
|
+
|
|
239
|
+int BST::parentsOfTwo() const {
|
|
240
|
+ return parentsOfTwo(root);
|
|
241
|
+}
|
|
242
|
+int BST::parentsOfTwo(BTNode *n) const {
|
|
243
|
+ if (!n || (!n->left && !n->right)) return 0;
|
|
244
|
+ int resultLeft = parentsOfTwo(n->left);
|
|
245
|
+ int resultRight = parentsOfTwo(n->right);
|
|
246
|
+ if (n->left && n->right) return 1 + resultLeft + resultRight;
|
|
247
|
+ else return resultLeft + resultRight;
|
|
248
|
+}
|
|
249
|
+
|
|
250
|
+// function InOrder:
|
|
251
|
+// Will return a string containing the sequence of visited keys
|
|
252
|
+// during an in-order traversal (BFS) of the tree.
|
|
253
|
+
|
|
254
|
+string BST::InOrder() const {
|
|
255
|
+ string st;
|
|
256
|
+ InOrder(root, st);
|
|
257
|
+ return st;
|
|
258
|
+}
|
|
259
|
+void BST::InOrder(BTNode *n, string &st) const {
|
|
260
|
+ if (n) {
|
|
261
|
+ InOrder(n->left, st);
|
|
262
|
+ st = st + to_string(n->key) + " ";
|
|
263
|
+ InOrder(n->right, st);
|
|
264
|
+ }
|
|
265
|
+}
|
|
266
|
+
|
|
267
|
+// function BFS:
|
|
268
|
+// Will return a string containing the sequence of visited keys
|
|
269
|
+// during a breadth-first traversal of the tree.
|
|
270
|
+
|
|
271
|
+string BST::BFS() const {
|
|
272
|
+ string st;
|
|
273
|
+ queue<BTNode*> q;
|
|
274
|
+
|
|
275
|
+ if(root!=NULL) q.push(root);
|
|
276
|
+
|
|
277
|
+ while(!q.empty()) {
|
|
278
|
+ BTNode *f = q.front();
|
|
279
|
+ st.append(to_string(f->key));
|
|
280
|
+ st.append(" ");
|
|
281
|
+ if (f->left != NULL) q.push(f->left);
|
|
282
|
+ if (f->right != NULL) q.push(f->right);
|
|
283
|
+ q.pop();
|
|
284
|
+ }
|
|
285
|
+
|
|
286
|
+ return st;
|
|
287
|
+}
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+// function searchRec:
|
|
291
|
+// A recursive version of the search algorithm.
|
|
292
|
+
|
|
293
|
+BTNode* BST::searchRec(int k) const { return searchRec(k,root); }
|
|
294
|
+
|
|
295
|
+BTNode* BST::searchRec(int k, BTNode *r) const {
|
|
296
|
+ if (r) {
|
|
297
|
+ if (k == r->key) return r;
|
|
298
|
+ else if (k < r->key)
|
|
299
|
+ return searchRec(k, r->left);
|
|
300
|
+ else
|
|
301
|
+ return searchRec(k, r->right);
|
|
302
|
+ }
|
|
303
|
+ return NULL;
|
|
304
|
+}
|
|
305
|
+
|
|
306
|
+// function insertRec:
|
|
307
|
+// A recursive version of the insert algorithm.
|
|
308
|
+
|
|
309
|
+void BST::insertRec(int k) {
|
|
310
|
+ if (!root) root = new BTNode(k);
|
|
311
|
+ else insertRec(k, root);
|
|
312
|
+}
|
|
313
|
+void BST::insertRec(int k, BTNode *r) {
|
|
314
|
+ if (k < r->key) {
|
|
315
|
+ if (r->left == NULL) r->left = new BTNode(k);
|
|
316
|
+ else insertRec(k, r->left);
|
|
317
|
+ }
|
|
318
|
+ else { // k is greater than r->key
|
|
319
|
+ if (r->right == NULL) r->right = new BTNode(k);
|
|
320
|
+ else insertRec(k, r->right);
|
|
321
|
+ }
|
|
322
|
+}
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+TEST_CASE( "BST is tested", "[BST]" ) {
|
|
326
|
+ vector<int> v = {8, 9, 5, 2, 4, 10, 1};
|
|
327
|
+ BST B;
|
|
328
|
+ for (auto e: v) B.insert(e);
|
|
329
|
+ REQUIRE (B.InOrder() == "1 2 4 5 8 9 10 ");
|
|
330
|
+ REQUIRE (B.BFS() == "8 5 9 2 10 1 4 ");
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+// REQUIRE( infix2Postfix("(3 + 4) * 9") == "3 4 + 9 *" );
|
|
334
|
+// REQUIRE( infix2Postfix("3 + 4 * 9") == "3 4 9 * +" );
|
|
335
|
+// REQUIRE( infix2Postfix("3 + 4 * (9 + 5)") == "3 4 9 5 + * +" );
|
|
336
|
+// REQUIRE( infix2Postfix("(3 + 4) * (9 + 5)") == "3 4 + 9 5 + *" );
|
|
337
|
+}
|